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1 INTRODUCTION 

With the proposed restructuring of the electric energy markets in the United States 

cind in other countries of the world, several new market structures are emerging for 

the buying and the selling of electric energy. One such market structure is the energy-

brokerage, wherein buyers and sellers of electric energy submit bids to buy and sell energy 

to a central entity known as the broker. The broker then proceeds to match buyers and 

sellers to form binding transactions, subject to system constraints, such that the total 

savings resulting from the matching process is maximized. The resultant savings are then 

allocated among the various participants in a predetermined, and presumably, equitable 

manner. 

The subjects of how to perform the matching, and how to allocate the resultant 

savings are already well-researched areas in the literature. These will not be the focus of 

this research. The subject of how participants in the brokerage might use the available 

information in a strategic manner, and submit the resulting bids to the broker that diflFer 

from their marginal costs, is known as "strategic bidding'', and is a relatively new topic 

in the energy market context. The reason for this could be the fact that, in the past, 

utilities, and to a lesser extent, independent power producers, were assured of a net 

profit virtually irrespective of their costs. This was the underpinning of the regulated 

monopolies that were in existence until the so-called deregulation movement started. 

One of the effects of such a system was to reduce electric energy pricing to "merely" a 

production costing operation ̂  

^It is, of course, well known that even this production costing function is complex, uncertain and 
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This subject of strategic bidding was the focus of the research reported in this dis­

sertation. Thus, the work presented here primarily deals with developing methods that 

individual participants could use in bidding into an energy brokerage market. Prelim­

inary bidding strategy development as a part of this research was reported in [1] and 

[2]. 

1.1 Problem Overview 

In this section, an overview of the work performed in this research is presented. This 

overview includes a statement of research objectives, the brokerage rules and assumptions 

used in the market modeling, an examination of the factors that affect bidding and the 

definition of scope for this research, and a brief description of the bidding strategies 

developed in this research. 

1.1.1 Statement of Research Objectives 

The main contribution of this research is the definition, and the demonstration of use, 

of a framework for the development and evaluation of bidding strategies, for participants 

to use, in preparing and submitting bids to an energy brokerage market. 

The framework includes: 

1. The rules under which the market operates. 

2. The different types of participants. 

3. The different objectives of these participants. 

4. The factors that affect the bidding of the participants. 

5. Strategies that consider the factors in item 4 and achieve these objectives. 

often inaccurate. However, the deregulated future promises to make the overall pricing process an even 
more complex and academically interesting activity. 



www.manaraa.com

3 

6. A tool to simulate market conditions, including competition from other partici­

pants, with which to test these strategies. 

The various participants in the energy brokerage market could use this framework 

to evaluate and improve their bidding strategies and, thus, their economic performance 

according to their objectives. 

Of the above items, item 1, while not clearly defined in all aspects, is already a fairly 

well-researched topic in the literature. So, a subset of the rules reviewed from existing 

literature has been assumed in this research. Items 2 and 3 are less complex and are well-

defined in the literature. Examples of the types of participants defined in the literature 

include investor-owned utilities, independent power producers, generation companies, 

distribution companies, large industrial customers, power marketers and load aggrega­

tors. These types could also classified according to their functions as well as according 

to their performance goals. Some aspects of items 4 and 5 have been approached by 

other researchers in the power industry, and in other industries. This research aims for 

contributions that enhance these approaches, or adapt them for application to the power 

industry. Examples include the use of historical market information in bidding, and the 

modeling of competitors' behavior. Some aspects of items 4, 5, and 6 are relatively 

new topics in the energy brokerage context. Examples include the effects of generating 

unit availability, startup/shutdown considerations, load forecast errors, and transmission 

considerations. Of these, the effects of unit availability and startup/shutdown consider­

ations have been analyzed in 6. Admittedly, the modeling presented for these analyses 

is very simple. But as will be illustrated in that chapter, even for the simple model, the 

implications of including these considerations can be very complex. 

In addition, the tools developed for brokerage simulation and strategy evaluation are 

expected to be a useful contribution for future research. 

Thus, the primary focus of this research is to develop strategies for various types 
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of individual participants in the energy brokerage to use in order to bid successfully. 

This research does not propose new models for implementation of energj- brokerages. 

Rather, assumptions are made regarding brokerage implementation based on models 

already developed by other researchers. Given such a brokerage market, the strategies 

developed will aim to improve individual participants' goals within the rules of the 

market. To test these strategies and to draw insights from simulations, we needed a tool 

that simulates a brokerage. One such tool is the brokerage simulator developed as part 

of this research. Again, while the simulator is expected to be helpful in testing of the 

strategies, the strategies will be independent of the simulator, and will be applicable to 

participants who choose a diflferent (presumably more advanced) tool for evaluation. The 

contribution of this research includes original ways to utilize the information generated 

by the simulator. 

1.1.2 Brokerage Rules and Assumptions 

This section summarizes the rules and assumptions that are used in modeling the 

brokerage market. The rationale for these assumptions is explained in Chapter 2, in the 

context of a review of the relevant literature. 

1. The brokerage market is assumed to be a facilitator for exchange of bulk energy 

(real power and energy only) between participants. In genered, these participants 

could be buyers or sellers of energy. The primary focus of the strategy develop­

ment in this research is for participants who have generating resources, and either 

have a means to calculate their production costs, or have a way to determine the 

replacement cost/value of energy from a source outside the market. A participant 

who is a pure load can still use these same strategies. However, load-side issues 

such as demand side management and direct load control are not explored in this 

research. 
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2. Participants submit bids to buy or sell predetermined blocks of hourly energy-. The 

bids include the participant name, the hour for the proposed purchase or sale, the 

number of blocks, whether the bid is for a sale or a purchase, and the bid price. 

3. The broker accepts the bids and matches them according to the Florida high-

low matching method. The bidding is considered to be one-shot: in other words, 

multiple rounds of bidding are not performed. This method is explained Chapter 2. 

The transaction price is set to be the average of the buy and sell bid prices. 

4. The matching stops when the buy bid price no longer exceeds the sell bid price, 

i.e., when no additional savings can be achieved. 

5. In the cases where the transmission network is modeled, it is assumed that the bro­

ker performs a DC-power flow-based calculation for all the transactions that result 

in potential savings. Thermal line limit constraints are enforced. Transactions 

that violate these limits are rejected. 

6. Transmission usage costs are calculated by using the MW-mile method, which is a 

distance-based incremental flow method. These costs are split equally between the 

two parties of a successful match. If the potential savings from the energy price 

differential between the bids is less than the potential transmission usage costs, 

the transaction is rejected. 

7. The resultant match information is distributed only to the two parties involved 

in the transactions, i.e., bidding is sealed, and the bid information is assumed to 

private and protected. 

8. The broker reports the resulting transaction prices, and if applicable, the trans­

mission usage costs, from each transaction, in a public database that is equally 

accessible by all participants. Also reported in this database, are the line flows in 

each line at the end of each hour. 
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The above assumptions are a summary of the key assumptions made in this research. 

Other assumptions made primarily involve the detailed modeling of the market and the 

strategies, and will be stated and clarified in the appropriate sections. Of the above 

assumptions, two issues merit further comment. These are: 

• Ancillary Services: 

Exactly what the term ancillary services means is not sharply defined at the time 

of writing this dissertation. However, the Federal Energy Regulatorj- Commission 

(FERC) identified through its order no. 888, at least six services that a trans­

mission provider must include in an open access transmission tariff. These are, 

(1) energ>- imbalance service, (2) spinning reserve, (3) supplemental reserve, (4) 

reactive supply and voltage control, (5) regulation and frequency response, and 

(6) scheduling, system control and dispatching services. In addition, four other 

services were also identified, that the transmission provider may offer as optional 

services. These are (1) backup supply service, (2) djmamic scheduling service, 

(3) real power loss service, and (4) restoration service. These services are not 

considered as part of the brokerage market in this research. 

• Spinning Reserves: 

The issue of spinning reserves has been indirectly approached in this research as 

follows. It was assumed that each participant in the test system was required by 

an entity outside the brokerage to carry 15% of the hourly forecast load as spinning 

reserves, and this was enforced as a constraint during the unit commitment phase 

of the individual companies. However, the issue of spinning reserves to support 

the transactions occurring as a result of successful matches has not been included. 

The effect of spinning reserve requirements from new transactions will have an 

effect on the strategies of participants, and mechanisms to include this effect is a 

candidate for future research. 
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1-1.3 Factors Affecting Bidding 

In this section, the various factors that could affect the bidding behavior of the 

various participants are examined. From this examination, the scope is defined for the 

resecirch described in this dissertation. 

The following parts of this section explain the impact of each of the factors on bidding 

strategies. 

1.1.3.1 Market-Related Factors 

Distribution of prices: Estimated price distributions serve the role of a forecast of 

market prices in the following bidding periods, and will impact the optimal bidding 

strategies of the players. One example of an impact is for the case of a seller who de-

terministically knows the cost of his generation and is trying to determine the optimal 

markup for bidding. This factor is well researched in other industries, and can be easily 

modified for power industry application. 

Expected savings/profits: Participants that wish to model competition might use the 

above distribution of prices to estimate probability of acceptance of their bids. This 

estimate is then used to derive an expected value of profit, which is then maximized. 

Company conditions compared to market conditions: This factor determines if the 

participants have any opportunity to wield market power and influence their profits. For 

example, if the mzirket is short on supply, and the peirticipant is long on supply, then 

the participant might be able to take advantage of the buyers by bidding high. 
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Table 1.1 Factors affecting the bidding strategies of the participants. 

FACTOR SELLER BUYER 
MARKET-RELATED 
Distribution of prices WS" ws 

Expected savings/profits ws ws 
Company conditions compared to market conditions ws ws 

(Energy shortage/surplus/neutral) 
SCHEDULING-RELATED 

Generating unit related: 
Online generation reserves ws ws 

Unit startup/shutdown ws ws 
Unit availability ws ws 

Unit maintenance requirements os^ OS 
Load-related: 

Load forecast error risk OS OS 
Load curtailment/DSM/DLC OS OS 

Weather and other external factors OS OS 
Transmission network related: 

System network condition OS OS 
Company network condition OS OS 

Transmission usage costs OS OS 
Transmission losses costs OS OS 

Network outage risk OS OS 
Ancillary services usage and costs OS OS 

Fuel-related: 
Fuel supply/network availability OS OS 

Fuel price risk OS OS 
Fuel contract limits OS OS 

Take-or-pay constraints OS OS 
On-hand fuel supply OS OS 

Emission-related: 
Compliance costs OS OS 

Emissions allowance availabilitv OS OS 
Emission allowance value OS OS 

Emission production OS OS 

®WS = Within Scope 
'OS = Outside Scope 
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1.1.3.2 Schednling-Related Factors 

Generating unit related factors: Unit avaUabilities, including maintenance require­

ments, affect both bidding behavior and eventual profit from bidding by introducing 

uncertainty in participants' supply/demand conditions. If participants consider these 

uncertainties, then their bidding strategies will be affected by this risk. Generation 

reserves or online excess capacity is a factor that affects the marginal costs of the partic­

ipants, and hence will affect bidding strategies. Traditionally, generation scheduling is 

performed to minimize the operating costs with respect to constraints. However, if the 

objective function is now to maximize (expected) profits, then startup and shutdown 

cost considerations will affect strategies if the participants wish to evaluate opportu­

nities to take advantage of market prices to a greater extent, and perform generation 

scheduling that is focused toward the marketplace. There is also the potential impact 

of minimum up/down times of the units started/shutdown on marginal costs in future 

bidding hours. Again, this process involves risk, and it is proposed in this framework to 

identify how this risk can be quantified. 

Load-related factors: Load forecast errors, including weather and other external fac­

tor effects, will have a similar effect as unit availabilities in that they introduce imcertain-

ties in supply/demand conditions. Thus they also affect the risk involved with bidding 

strategies. Load curtailment agreements, demand side management (DSM), and direct 

load control (DLC) all have complex effects on the uncertainties involved with demand, 

and thus will impact bidding strategies. However, they are outside the scope of this 

research. 

Transmission network related factors: System network conditions are expected to be 

public domain information. These will affect the participants' decisions by affecting the 
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feasibility of transactions. Transmission usage costs, losses costs, and ancillarv- service 

costs will affect participants' bid outcomes because they affect the overall economics of 

the bid matching process. While there is very little information on how small or large 

this impact will be in the future, an attempt was made in this research to incorporate 

their effects on the effectiveness of the bidding strategies of the participants. Network 

outage risk is a major aspect that affects sj-stem operation, and will have an impact on 

participants' bidding strategies. However, it is outside the scope of this research. 

Fuel-related factors: Internal and external fuel supply as well as fuel network capacity 

and availability obviously affect the production costs, and thus affect the participants' 

bidding strategies in an indirect way. The volatility of fuel prices might introduce errors 

in the participants' estimates of production costs, and might have an impact on strate­

gic bidding. However, many participants consider fuel price risk separately from the 

scheduling function. For example, the participants may hedge fuel prices by purchasing 

fuel options. Thus, as far as bidding in the energy brokerage market they might consider 

fuel prices to be deterministic. However, this might change in the future. For now, fuel 

considerations axe outside the scope of this research, while being a candidate for a future 

research topic. 

Emission-related factors: The impact of transactions on emissions will affect compli­

ance strategies and costs, and therefore the overall profitability of the transaction. Also, 

if the emission allowance (EA) market trading becomes significant in the future, then 

the value of the EA will affect costs. For now, emission considerations are also outside 

the scope of this research. 

Some of the above factors may not have a direct impact on certain types of players. 

For example, if the player owns no generation and is a pure buyer, or a power marketer. 
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then none of the generating unit related aspects affect him. 

1.1.4 Strategic Bidding 

As outlined in Chapter 2, different approaches have been suggested in the literature 

as possible methods for the pjuticipants to employ in an auction market such as the 

energv* brokerage. The approaches presented in this research essentially involve modeling 

competitors' bidding behaviors by probability distributions, followed by maximizing a 

lower bound to expected profits from the bidding activity. Thus, the implicit assumption 

is that participants seek to maximize not only their profit from the bidding activit>\ but 

also wish to achieve an optimal probability of acceptance. Thus, the objective function of 

the participants is assumed to be the expected profit, which is the product of the profit, 

and the probability of achieving this profit, given that the competitors bid according to 

an estimated probabilitj- distribution. 

In Chapter 6, some illustrative scenarios are presented, that extend this expected 

profit maximization approach to an expected utility maximizing approach. This provides 

a method to include the concept of risk preference in the bidding strategies. 

1.2 Executive Summary 

In Chapter 2, a review of the relevant literatiire is presented. Because of the wide 

scope of the strategic bidding problem, the volume of literature that could arguably 

be "relevant" to the research is very large. Thus, that chapter is not intended to be 

an comprehensive bibliography on the issues that affect strategic bidding. However, an 

attempt has been made to provide a review of a representative sample of the papers 

from each relevant area. 

In Chapter 3, strategies that attempt to include competitor behavior by using avail­

able market information are presented. A lower bound on the profit from bidding is 
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derived, which is useful in pro-viding an objective function that can be optimized using 

the limited information assumed to be a\'ailable in this research. This is followed by 

derivations for optimal bids that maximize this lower bound, for different assrunptions 

about the probability distribution of the competitors. Details on the optimality and 

concavitj- conditions are presented in the Appendix. 

In Chapter 4, the brokerage simulator, which was developed as a part of this research, 

is described. This simulator is an implementation of the rules assumed in this research. 

It was used to test the strategies developed and presented in Chapter 3. Resiilts of the 

simulations performed on this simulator are presented and analyzed in Chapter 5. Also, 

based on these results, some heuristics were developed to improve the performance of 

the strategies. Results from implementing these heuristics are also presented in this 

chapter. 

In Chapter 6, a qualitative treatment of the scheduling factors that might affect 

bidding strategies is presented, followed by numerical examples to illustrate these ef­

fects. Also included in this chapter, is a treatment of risk preferences by using results 

from recent developments in the field of utility theory and risk preference functions by 

researchers in economics. This is followed by the modeling of bidding objectives as 

expected utility maximizations, and the comparison of results from using this type of 

objective, to using the expected profit maximization objective, for various scheduling 

scenarios. These scenarios are to be viewed as a first attempt at modeling scheduling 

risk considerations in strategic bidding, and not as solutions prescribed to handle the 

rather complex considerations of risk in the energy markets. 

Conclusions and suggestions for future work are presented in Chapter 7. 
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1.3 Overview of Original Contributions 

This section provides an overview of the original contributions made by this research 

to the power systems area. While periodically in this dissertation, we make an attempt 

to clarify which parts of the work presented are results of assumptions and lessons drawn 

from existing literature, and which parts are results of original work by this author, this 

section clearly states the primary original contributions. 

1. The primary contribution of this research is the development of a framework for 

developing bidding strategies for individuzd participants. This framework includes 

suggested ways to model competitors, initial development, implementation and 

testing of strategies, and the development of a tool to simulate such strategies. 

Given that bidding strategies in energy markets is a hitherto less researched area, it 

is expected that several researchers are developing different frameworks to achieve 

these tasks. Therefore, no claims are made by this author as to the superiority' of 

the approaches presented herein; only the originality of the contributions to power 

system research is presented here. 

2. The modeling of competing bids as a probability distribution is an idea that has 

been used in several other industries. However, with the exception of [3], the work 

presented here is one of the first attempts, to the best of this author's knowledge, 

to apply this technique to energy brokerages. Reference [3], while being published 

at a time when this research was in its early stages, is an independent work, and 

did not serve as a model for our work. 

3. The consideration of buyer-side bidding is omitted in [3]. Buyer-side bidding is 

included in our considerations. As a way to avert the computational complexities in 

considering two different kinds of distributions at the same time, our contribution 

is the lower bounding of the profit, followed by the application of heuristics to 
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strategies. 

4. The detailed derivation of the first- and second-order conditions required for the 

implementation of the suboptimal bidding procedure, for the pol\-nomiai, the beta 

and the gamma distribution cases, were performed by this author. 

5. Several different simulators that use various models to implement energy broker­

ages have already been implemented by other researchers, and it is fair to assume 

that many more are under development. However, in this dissertation, we have 

developed original heuristics that adjust the bid prices in response to the base case 

results. Both the heuristics themselves, and the general framework of the simula­

tor that helps to develop these heuristics easily, are original contributions of this 

author, and are expected to be of value to the power industry. 

6. The use of utility functions to model risk in transactions is a well-researched su-ea 

in economics. However, the use of the results from work by Saha [4], in the form of 

the flexible Expo-power utility fimction, to model the effects of risk preference in 

energy brokerage transactions is original to this work. While the extent of modeling 

presented herein is limited, such an approach can be explored by researchers in 

a variety of power system risk researchers, and could be of value in several areas 

in addition to power system operations. It must be mentioned here that in a 

related area of transaction selection, Kumar et al [5] presented a framework for 

transaction selection using decision analysis. However, the utility function used 

there was purely exponential in nature, and is not flexible enough to model various 

risk preference attitudes. In our work, we chose the Expo-power function because 

of its flexibility. This flexibility is needed in order to allow enough latitude in 

our framework for participants of widely different risk preference attitudes, since 
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very little is known currently about the kind of participants that will evolve as the 

primary players in energy markets. 

Once again, it is emphasized that the purpose of this section is only to specify the 

original contributions made by this research. The other research projects referred to 

in the above item are expected to be ongoing projects, and the comparisons made in 

those items are based on published work only. The comparisons serve the purpose of 

distinguishing our work from the work presented in those references, and are not made 

with a view of criticizing those references in any manner. 

Also, although progress has been made in the areas described in the above items, 

none of the problems described in this research is considered to be solved completely. 

Future research will probably expand the results presented here. However, significant 

contributions have resulted from this research. 
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2 REVIEW OF RELEVANT LITERATURE 

2.1 Power Industry Restructuring £uid its Impacts 

In this section the papers reviewed cover the impact of the market restructuring 

on various aspects of the power industry. Kriz [6] provided an overview of the advent 

of competition in several states including California, Massachusetts, Rhode Island, and 

New Hampshire. In that paper, the author outlined some of the legislative complexi­

ties involved in the process of deregulation, such as the issue of jurisdiction of various 

government bodies like FERC, Congress, state and local governments. The paper also 

provided a table of the electricity rates prevalent in 20 states with the highest and lowest 

10 rates being shown. It is not surprising to note that of these states, some with the 

highest rates (New Hampshire, Rhode Island, Massachusetts and California) also have 

the hottest debates going on, regarding restructuring of the local energy markets. 

Dunn et al [7] broadly identified, the impacts of restructuring the energy markets on 

the objectives of the participants, control center applications, information technology 

requirements, and transactions analysis. In that paper, the authors identified some key 

issues such as the value of information, the possibility of gaming by generation market 

participants, and modifications necessary to conventional energy management system 

tools such as unit commitment. The emergence of financial tools for risk management 

was also pointed out in that paper. Sheble [8] identified the emergence of the view that 

electricity is a commodity and would be treated as a commodity. In that paper, some 

imresolved issues were raised, such as transmission wheeling priorities, the obligation 
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to serve, transmission network upgrades, etc. From these papers, it is evident that 

restructuring of the energy markets in the United States is imminent, if not already 

occurring. It is also obvious that the restructuring will have complex and far reaching 

effects on power system operations. 

From the customers' viewpoint, Stein [9], provided some insights into a significant 

driver of the restructuring of US energy markets - retail loads. In that paper. Stein 

argued General Motors' case for lower electricity prices by giving them the ability to 

choose their electricity provider. 

2.2 Energy Markets — Implementations and Rules 

This section reviews papers relevant to implementation and rules for some of the 

proposed competitive energy markets. Based on these papers, a subset of rules was 

defined in this research to implement an energy brokerage simulator. 

Energy brokerages are the specific type of energy markets being considered in this 

research, and consist of double auctions on the part of buyers and sellers of energy. One 

of the earliest papers on energy brokerages is by Barker [10]. In that paper, the author 

reported widespread interest in energy brokering in the United States. The author 

noted that the energy broker (at that time) could be either the primary facilitator for 

interchange energy trading, or cotild be a supplemental market to the existing bilateral 

interchange markets. At this point, it is still not clear if the energy broker will become 

the sole facilitator of energy trades. So in this research, we assumed that there is a 

possibility that participants may have energy contracts outside the jurisdiction of the 

broker. 

Several methods have been proposed for implementing brokerages. In reference [11], 

Doty et al proposed brokerages implemented based on high-low matching where the buy 

bids are ranked in decreasing order, and the sell bids are ranked in increasing order, 
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and the highest buy bid is '"matched" to the lowest sell bid, cind so on until no further 

savings are possible. A linear programming based implementation was proposed by 

Fahd et al in [12], where the optimal bids were determined by sensitivity analysis on 

economic dispatch, followed by LP-bsised bid matching. An optimal power flow (OPF) 

based implementation was proposed by Fahd et al in [13], where the optimal bids were 

determined by an OPF solution, followed by LP-based bid matching. The advzintage of 

this method is that network constraints can be incorporated. An augmented Lagrangian-

based approach was presented by Anwar et al in [14] for implementing the OPF. The 

amount of energy for sale and purchase were calculated in that paper by parametric 

analysis on the OPF solution. 

A three-level approach was presented by Post et al in [15]. In that paper, the first level 

consisted of optimally allocating supply and demand independent of the transmission 

network. The novel aspect of this allocation was the use of reservation prices by the 

sellers. This was followed by adjustment of supply allocation for losses. This was done 

by calculating losses by using penalty factors, and increasing the generation of the most 

economical generator to compensate for this loss power. The third step was an LP-based 

transshipment problem solution, with capacity constraints considered, to maximize the 

surplus from transactions that were feasible with respect to network conditions. This 

was modeled as a minimization of transmission usage costs using the MW-mUe method. 

Also, it was assumed that FACTS devices were in place that controlled the flows on the 

lines. Thus, the implementation of energy brokerages has been fairly well researched. 

Another key aspect of brokerages is a "fair" allocation of the resultant savings. In 

[16], a method that allocates savings based on the Shapley value of the participant is 

presented by Chattopadhyay. Shapley values are an estimate of the worth of a partici­

pant in an interconnected system from the point of view of net savings, and hence are 

expected to be superior criteria upon which to base allocations. Herriott [17] established 

theoretical grounds for equitable allocation of savings in the brokerage. In [18], Hahn 
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et al examined experimentally, the relative efficiencies of the split-savings method of 

allocation, and the single market-price method of allocation. The author noted that the 

single market-price showed higher efficiencies; however, both methods showed at least 

90% efficiency as compared to the competitive equilibrium. 

The advent of deregulation imposes some additional considerations on the energy 

brokerage problem. The objectives of the participants in the brokerage now becomes 

profit maximization, as opposed to cost minimization, even though the objective of the 

broker remains the same. In [19], Sheble et al pointed out that several regulatory ques­

tions need to be answered, such as wheeling costs, loss allocation, priority of transactions, 

etc. The answers to these questions are still not clear. 

The study of auction mechanisms in organized markets by experimental methods 

has been a well researched subject. An acknowledged leader in the area of experimental 

economics applied to auctions is Dr. Vernon Smith. An example of this work can be 

found in the paper by McCabe, Rassenti, and Smith [20], wherein the authors presented 

results from a computer-assisted market that were simulated in a laborator}' environ­

ment. These markets deal with gas and electric power, and use auction mechanisms to 

implement a competitive environment. In that paper the authors pointed out that, in 

these markets, the individual generator owners might submit bid prices that are lower 

th£in marginal generating costs, because of startup/shutdown cost considerations. The 

authors also suggested that spot prices at the buses be used to determine transmission 

prices. In [21], Sheble identified details for implementation of energy brokerages in the 

open transmission access context. In that paper, the author proposed the analysis of 

electric energy as a commodity in a financial framework. Definitions were provided for 

contracts traded in the cash market, futures market, options market, clearing house 

market and planning market. Another model was presented by Kimiar et al in [22] 

that considered an auction game. The objective of the auctioneer was to determine an 

optimal schedule of power transfer. This model assumed multiple rounds of bidding for 
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each period, where the auctioneer could continue to request additional bids from sellers 

and buyers until price discovery has taken place. The auction mechanism was assumed 

to be the high-low matching method. The advantage of multiple rounds per period is 

that participants have a better chance to discover the correct state of the market and 

respond to that state, rather than base their strategies only on historical data. This 

presumably improves the chances of clearing the market (satisfying the demand with 

the supply). 

Alvey et al [23] described a security-constrained bid-clearing system being used in 

the New Zealand wholesale electricity market. The model described in that paper is 

similar to the models described in the other paper reviewed in this section, in that the 

auction mechanism is a sealed double auction. The price used, however, is a single 

market clearing price, defined as the price of the last bid cleared. Also, an LP algorithm 

was used to solve the network constrained optimization problem, with the nodal prices 

determined by LP. In recent work, Singh et al [24], studied the effects of using a location 

dependent nodal spot pricing scheme, as opposed to using a single market clearing price 

mechanism. The authors showed in that paper that the former method could lead to 

arbitrage opportunities for the suppliers. 

Other models that have been proposed include the England and Wales Power Pool 

system, where the bids submitted by the participants also include unit commitment re­

lated data, in addition to bid prices, such as ramp rates, unit minimum run and down 

times, etc. In [25], Jia and Radinskaia showed that the heuristics used to implement 

the bidding rules in England can be derived analytically, using Lagrangian relaxation. 

However, Oren et al [26] have shown that, from the implementation point of view, the 

Lagrangian relaxation-based unit commitment algorithm used to implement such a com­

petitive market is subject to volatility in the price signals provided and the profitability 

of some units, depending on the parameters for step size selection used in the dual op­

timization. Thus, that paper provided support for a more decentralized approach to 
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the energy market, where a simpler auction is performed, with details of unit commit­

ment and scheduling left to the individual participant to determine. In [27], Al-Agtash 

showed a Lagrangian multiplier based implementation for the operational planning in 

such a system, which is a simplified model of the proposed California power exchange 

(PX) and independent system operator (ISO). 

In this research, we have assumed that the decentralized model (somewhat similar 

to the proposed California market model) will be in effect, and that unit commitment 

decisions will not be the concern of the broker, but of the individual participant. As far 

as the broker is concerned, each hour will be treated separately from the other, in other 

words, there is no temporal constraint in the objective of the broker. 

Another key consideration that is a result of open access to transmission is the pricing 

of ancillary services. In [28], Kumar et al presented the approach that ever\- transac­

tion in an energy brokerage depends on multilateral contracts for ancillarj- services. .A. 

separable programming problem with a piecewise linear objective function is presented 

as the objective for the broker to maximize. The objective translates to maximizing 

transactions while ensuring system demand, spinning and ready reserve requirements, 

and satisfying the transmission line losses. 

Based on a literature review, some important assimiptions have been made in this 

research. These are stunmarized as follows. We implemented a simplified brokerage 

model that follows the high-low matching algorithm that is outlined in [11]. This was 

followed by a power flow based algorithm outlined later, that attempts to maximize 

surplus from feasible transactions. This is essentially a simplified variation of the model 

presented in [15]. 

Savings allocations are determined by the split-savings method given in [11], even 

though this may not be a "fair" allocation under all scenarios. The reason for this is the 

ease of implementation and the current use of spUt savings in the power industry. In 

the context of reference [21], this research deals only with the cash market. Inasmuch as 



www.manaraa.com

99 

transactions may occur after a certain time period from price determination, the model 

in this research might be classified as a forward market, but the classification is not 

central to any of our approaches. Single round (or one-shot) bidding for energy has been 

the norm in the brokerage markets implemented or proposed in several instances ([10], 

[11], [16], [18]) and was the model assumed in this research as well. But the strategies 

developed are by no means irrelevant in the multiple round scenario. Indeed, the strate­

gies developed in this research can be envisioned as starting points for developing bids 

in each of the several roimds in each period of bidding, if a multiple round model is 

assumed. 

Ancillarv* services are assumed to be contracted outside the jurisdiction of the broker. 

However, it is recognized that future strategies will be affected by and must consider the 

level of usage of ancillary services by the participants. At this point in time, ancillary 

service considerations are beyond the scope of the model proposed here. 

2.3 Strategic Bidding — Other Industries 

The papers reviewed in section 2.2 deal with implementing energj- brokerages with 

the goal of optimizing total system savings, subject to a variety of constraints, including 

non-traditional considerations such as ancillary services. This was usually followed by 

equitable allocation of savings according to certain rules. Thus the papers discussed 

the structure of the market. Within this structure, participants choose to bid for energv* 

based on different factors. If factors other than just the cost of production are considered, 

then the participants are said to bid strategically. Strategic bidding is the process by 

which a participant in a market develops bids that are perceived to be effective in 

achieving its performance goals. Such strategic bidding behavior, while imcommon in 

an energy brokerage context, is common in other industries. Stark et al [29] presented 

a comprehensive bibliography on competitive bidding. The number of citings in that 
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reference shows that competitive bidding and the area of strategic bidding in particular, 

are very well researched in other industries. The following sections review literature 

pertaining to strategic bidding, both in the power industry and in other industries. 

Some of the industries where strategic bidding is commonly used include construc­

tion, oil tract leasing, and property sales. Such bidding typically relies on market in­

formation, such as transaction prices to estimate competitors' behavior. Based on this 

market information bids are developed. One of the earliest papers on competitive bid­

ding is by Friedman [30]. In that paper, the author suggested a variety of objectives that 

a company could use in competitive bidding. The author also presented a method to 

estimate the probability of winning a bid against competitors based on market data, and 

to use this probability to determine the optimal bid. In reference [31], Griffis provided 

a method by which competitors are modeled according to probability distributions of 

their bids. This same reference [31] also presented a method for updating probability 

distributions when new data become available. In reference [32], Baron discussed the 

eflFect of risk aversion on optimal bid prices of a firm in the case of incentive contracts. 

Wilson [33], discussed the equilibrium solution in the case of asymmetric information 

among competitors. In reference [34], LavaUe presented a Bayesian approach to bid 

development, based on conditional probabilities, involving asymmetric information and 

asymmetric perception on the possession of such information. In [35], Skitmore et al 

proposed a multivariate approach to using the probability distributions, thus extending 

the methods in works such as [30]. In reference [36], Boughton presented approaches to 

bidding that go beyond probabilistic models. Some of these methods may be applied di­

rectly to energy brokerages. Other methods may be modified (such as by using the lower 

bounding method presented later in this research) for application in energy brokerages. 
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2.4 Strategic Bidding — Power Industry 

This section reviews some of the papers that apply strategic bidding techniques 

in the power industry* context. In [37], Rozek provided a survey on developments in 

competitive bidding in the emerging electricity markets. That paper primarily focused on 

the new generation capacity market, rather than the energy market. Nevertheless, some 

of the issues are the same for the energy markets. The issues, that were raised in that 

paper, include the adnainistration of the bid evaluation process, influence of the bidding 

rules on the offer strategies of the bidders, and the use of experimental economics, i.e., 

markets simulated in a laboratory environment to study the effects of various factors on 

market performances. In [38], Kahn et al presented optimization methods for evaluating 

competitive private power contracts in the capacity planning function of a utility. That 

paper presented the use of the Benders decomposition approach to select the optimal 

bids. The paper assumed that the bids are for dispatchable blocks of power submitted 

by different producers (sellers) to the utility (sole buyer) for consideration. Thus that 

strategy considered the case of a dominant buyer who has complete knowledge of the 

market price distribution in advance. 

In [3], David presented a strategic bidding approach for the case where there are a 

number of sellers, and one buyer, who picks the least bid seller. Both a deterministic and 

a probabilistic formulations were presented. The approaches in that paper are similar 

in the following ways to the approaches in this research. The probabilistic approach 

in both involved using distributions for the bids of competitors. But no mention is 

made in [3] of what distributions should be used to model competitors, and how the 

strategies are implemented for more complex distributions than those with a linear 

CDF. In this research, we investigated both issues in detail. Both methods have as an 

objective, the maximization of expected value of profit. However, that paper considers 

a very simple market structure, neglecting the possibility that buyers might also be 
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submitting a veiriety of bids. Also, mininiuin up and down times of units, and unit 

commitment costs. These are components that have been included in our research, 

in the illustrative examples presented in Chapters 5 and 6. .AJso, while the author of 

that paper has commented on using utility functions to model preference functions, no 

analysis is presented on the nature of the utility functions that could be used, and the 

effects of risk attitudes on bidding strategies. These issues have also been investigated 

in this research^ 

The method in [3] has one advantage in that, the objective function is posed as a dy­

namic programming problem, with the stages being the bid blocks, and the states being 

the bid prices. Since dynamic programming is very flexible in possible modifications to 

objective function, this might be a worthwhile consideration in future additions to this 

research. 

In [39], Richter has presented a novel approach to strategic bidding in the brokerage 

market using genetic algorithms (GAs). The brokerage model assumed is similar to that 

given in [22], with multiple rounds of bidding for each period. Richter used GAs to both 

predict the future market price, as well as determine the optimal bid. This was done by 

evolving genetic agents that perform better in each round of bidding. Also, that work 

was presented as the development of a framework for bidding strategies. It would be 

interesting to see further developments in that area when complex strategies are actually 

analyzed. It would be of value to see if the strategies developed by using intelligent 

agents could be distilled in the form of easy to understand niles. Also conceivable is the 

scenario that participants may not place a high premium on knowing why a particular 

agent performed well in a given situation, so long as it is possible to reproduce the 

bidding performance in a market situation. 

1 While a part of this research was performed after the publication of reference [3], our work was 
independent of the work presented there. In fact, application of probability distributions to model 
competitors is an idea already applied widely in other industries, as shown in Section , amd those 
references were the primary source of inspiration for our work. 
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The primary difference between [39] and this research is that this reseeirch considers 

a framework that includes unit commitment considerations and, to a limited extent, 

transmission considerations. However, this research does not explore the use of genetic 

algorithms for bidding. Instead, conventional methods for optimal bidding are used with 

the application of expected value or utility maximization. 

In recent work, Sakk et al [40] reported the use of a neural-network based learning 

algorithm to develop bidding strategies in a sequential bidding model. The strength of 

this algorithm is that it being implemented as a tool that can be used across the internet, 

with no additional capability on the part of the users except a web-browser. However, in 

that paper, it was assimied that bidding histories of the participants were made public. 

This may not be a realistic assumption, since this could reveal cost structures of the 

participants. In [41], Hao et al formulated a bidding model based on consumer payment 

minimization. This is a relatively new approach, compared to the unit commitment-like 

methods that aim to minimize totai system costs, or maximize total system savings. 

Under this model, the bidding strategy of the units that are "on the margin", i.e., with 

operating costs close to the market clearing price, is expected to be to slightly shave the 

bid, in other words to bid slightly above the marginal cost, for selling. However, it is 

tmclear as to what the exact amount of shaving should be. Also, buyer side bidding is 

not considered. 

An interesting paper related to strategic bidding was presented recently by Krishna 

[42], where intelligent agents (computer programs) were allowed to negotiate and com­

municate with intelligent agents of other players, to form collusive coalitions in market 

games. This is a novel approach based on game theory. In our research, however, we do 

not assume that participants form any coalitions. 
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2.5 Generation and Transactions Scheduling 

In this section, transactions and scheduling related literature is reviewed. In the 

past, some approaches have been tried wherein the uncertainties in system scheduling 

data are incorporated in scheduling transactions. In [43], Prasannan et al presented 

a method to incorporate sale transactions in the hydrothermal coordination problem. 

In that paper, the authors assimied that transaction prices axe predetermined by the 

selling utility and power levels at this price are oflFered to the purchasing utility. This 

purchasing utility might then choose up to the level of power offered at the offer price. 

The method presented is an attempt to optimize this real time pricing problem by 

Lagrangian relaxation. In [44], Zhang et al presented a similar approach, solved by 

using the augmented Lagrangian decomposition method. Both methods attempt to 

minimize cost. In [45], Fan et al considered including the effect of committing purchase 

transactions on system energy price by a first order approximation of a Taylor expansion 

of the system energy price with respect to transaction power. The unit commitment 

algorithm proposed was a sequential unit commitment method, which is essentially a 

heuristic method. The above references are relevjint to later sections where scheduling 

related strategies are concerned. In those sections, the approaches that incorporate 

uncertainties involve quantifying the risk from the uncertainties, and modifying the bid 

prices based on this risk. While Lagrangian relaxation based approaches were used in 

the approaches, the unit commitment tool used in our research was a priority list based 

program that is admittedly less flexible than the Lagrangian relaxation approach. This 

method was chosen for ease of implementation and speed of execution. However, the 

strategies developed in this document are not dependent on the type of unit commitment 

tool used, and will be equally applicable if the participant were to use a Lagrangian 

relaxation based tool for unit commitment. 

In [46], a stochastic unit commitment model was proposed by Takriti et al, based on 
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scenario bundles, for situations where the demand is uncertain. The basic concept is to 

minimize the probability weighted average cost of production for the possible scenarios. 

The solution process was by Lagrangian relaxation. In [47], Breiphol et al presented 

a Gauss-Markov load model for application in risk evaluation. In that paper, the load 

model was used to predict system hourly load mean and variance based on the previous 

hour's load. In [48], Hoffer et al discussed various distributions to be considered for 

conditional load duration curves. The distributions considered include gamma, beta 

and triangular. These references are relevant to the discussion of the effect of load 

uncertainties on the participant's bidding strategy, in later sections. 

In [49], Billinton et al considered the generating system operating health and risk with 

and without stand-by units, intemiptible load, and postponable outages. A risk index 

was defined to quantify the probability of the system being at risk (in this context, the 

sum of the probabilities of the system being at emergency state and extreme emergency 

state, because of unit outages.) 

However, in the context of a competitive market, it may be difficult to assess an 

acceptable risk level based on such an index. An intuitively more appealing approach 

is one where scheduling options available to participants could be evaluated based upon 

a method that considers not only the relative profitability of selecting the option, but 

also upon the participant's attitude towards risk-taking. Such a quantity is the so 

called utility function of the participant. Literature relating to this area is reviewed in 

Chapter 6, as part of Section 6.4.2. 

2.6 Transmission Access and Pricing 

This section references some papers that are relevant to the assumptions made in 

this research with respect to transmission. Transmission is the most complex of the 

issues that were raised with deregulation; there is a large volume of literature on this 
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subject. This section is not to be considered by any means, an extensive bibliography. 

In fact, Lankford et al have published such a bibliography for the IEEE Task Force on 

Transmission Access [50]. In [51], Vojdani et al raised some of the issues that have to 

resolved with the advent of of open transmission access. Some of these include models 

for transmission rights, dispatch, control and pricing. The authors noted that the FERC 

accepted contract path as a way of pricing transmission usage. However, alternatives 

were expected to be proposed for this method that reflect actual flows on Unes. Naumann 

[52] presented the impact of FERC Orders 888 and 889, which required the posting of 

pro forma open access tariflfe, and available transmission capabilities (ATCs) on the 

open access same-time information system (OASIS), and also required that reservations 

for transmission be made only through the OASIS. In that paper, the author related 

the experiences of the Commonwealth Edison Company. Some of the impacts were an 

increase in transaction volume, increased concern about loop flows, and the complexities 

involved in the request, reservation and use of transmission service. 

In [53] Outhred et al presented the various alternatives being considered by the 

Australian industry for transmission pricing. Of these, the "benefits method" (which 

consists of allocating the cost of the high voltage network element according to user 

benefit generators and loads equally), and the distance based MW-Km (or MW-mile) 

method were selected as the two most favored options. Based on these options, a nodal 

auction market model was presented. 

In [54], Tabors discussed the different approaches to transmission pricing, short-run 

marginal cost (SRMC) based, and long-run margined cost based (LR^IC). In reference 

[55], Happ has described four different cost of wheeling methodologies, including the 

MW-mile method. In [56], Tsukamoto et al proposed the allocation of fixed transmission 

to wheeling transactions as an extension to the MW-mile method. The extension is 

the consideration of cooperative game theory to minimize the maximum regret of each 

participant, with the allocation of costs. In [57], Scarfone presented an interesting 
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application of short-circuit simulations to calculate MW-miles of a transaction. The 

basic concept is to perform a short-circuit study of a fault at the delivery bus being 

considered, by means of commercially available software, and to use a percentage of the 

fault current on each line to determine the MW-mile impact of the proposed transaction. 

Obessis et al [58], presented a review of existing cost based transmission pricing schemes, 

and proposed a new approach to combine the spot pricing and the embedded cost based-

pricing methods. 

In this research, it was assumed that transmission is modeled according to the MW-

mile method. The primary reason for this is ease of implementation. Also, it is superior 

to postage stamp method because it includes the concept of the distance between the 

supply and delivery points. This assumption is also supported by the indication that 

the MW-mile method seems to be becoming a common method for pricing transmission 

in the United States. 

2.7 New Tools and Concepts in Energy Markets 

In this section, some of the new tools and concepts being used and proposed for use 

in the emerging energy markets are reviewed. In [59], Thomas et al presented a very 

detailed analysis of the different kinds of tools that will be required under three different 

scenarios of market restructuring. These scenarios were defined as the base case scenario, 

the maximum ISO scenario, and the minimum ISO scenario. In the base case scenario, 

the market is considered in the short-term after the FERC orders 888 and 889 become 

effective, with no retail access, vertically integrated utilities, amd non-discriininator>' 

transmission access being provided to all users. The second scenario assumes that the 

ISO performs a centralized unit commitment based upon bid prices, and also sets prices. 

All energy is assumed to be bought and sold through this ISO. In the third scenario, 

the ISO does not own any generation or transmission, and primarily is concerned with 
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network security. 

Clayton et al [60] identified different kinds of tools required for use in system planning 

in the competitive environments. Flatabo [61] described some of the new tools developed 

or adapted for use in the Scandinavian market. These include price forecasting, risk 

management, trading systems, and transmission congestion and pricing software. 

A class of tools, proposed for risk management in the energy markets, is a set of 

financial derivative instruments, such as futures and options contracts for electric energj*. 

Ramesh [62] provided the basics of financial derivatives in energy markets. Other related 

references in this area include [8] and [21]. 

From these papers, it is clear that modifications will be needed for conventional 

tools, and that new tools will be needed, in order to cope with the changes that market 

restructuring has introduced into power system operations. 
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3 MARKET-BASED STRATEGIES 

3.1 Perfect Competition 

In a perfectly competitive market there are no barriers to entry and exit and complete 

and accurate information is available to all the participants [63]. In such a market, no 

single participant will have the market power to influence the price of the commodity 

being bought and sold, and will thus be a "price taker". In such a market, the following 

condition can be derived for a profit maximizing producer: 

where: 

q is the quantity- of the product that the participant produces, 

p is the market price for the commodity, 

7r(g) is the profit of the producer from producing quantity q of the product, 

C{q)  is the production cost of the producer, a function of quantity alone. 

In Equation 3.1, the only production decision that the producer needs to make is 

that of the quantity to produce, q. Differentiating the above equation with respect to q, 

and applying first order conditions yields the following expression: 

Rearranging the terms of the above equation yields the following well known condi­

tions for price in a competitive market: 

Ti{q)  =pq-  C(q)  (3.1) 

7r'(?) = P -  C ' i q )  =  0 (3.2) 

P = C'{q) (3.3) 
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Equation 3.3 states that the optimal quantity that a producer should produce in a 

perfectly competitive msLrket would be such that the difference between marginal cost 

of production and market price is zero. From a power industry perspective, this is the 

rationale behind moving to a price-based market structure from a cost plus-based market 

structure. The implication of this equation is that each producer will dispatch their 

generating units such that the incremental cost of production (marginal cost, C'{q)) 

is equal to the market price. This, of course is the "equal Lambda" criterion that 

centralized economic dispatch achieves. 

In the context of the energy brokerage market, this would imply that there is no 

need for any strategies to bid in the market. Merely bidding the marginal cost of 

production at each bidding period would be the optimal bidding strategy in a perfect 

market. However, the real energy markets that have existed so far, and are currently 

evolving, are not perfectly competitive markets. In the following section, some of these 

imperfections are examined. 

3.2 Imperfect Market Conditions in Energy Markets 

In the energy markets that have been in existence until now, zmd in some of the mar­

kets evolving in the future, some barriers to entry and exit exist. One barrier to entry 

is the requirement for memberships in certain power pools, power exchanges or some 

similar market structure. Thus, new entrants to the market cannot freely participate 

without investing some amount of resources as sunk costs, capital or membership fees. 

Also, the obligation to serve load has not been entirely removed in these markets. In 

the United States, one such evolving market at the time of this research is the proposed 

California power exchange. Thus, there is a barrier to exit the market. This prevents, 

at least to a certain extent, market participants from choosing not to generate power 

if market conditions such as price are not favorable. Also, the existence of large power 
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generating companies with a diverse mix of generating resources of varying costs and 

eflBciencies, in conjunction with relatively weaker competitors with high cost resources 

suggests that there is the possibility that one or more players might have more market 

power than others. Another consideration that is important is the availability of infor­

mation. Even though certain relevant system data is made public in the energy markets, 

the ability to transform this data quickly into usable information, will depend on the 

resources available to individual participants. The lack of liquid markets for hedging 

price and quantity risks also means that there is considerable uncertainty that the pro­

ducer faces prior to making production decisions. Thus, we can see that in the incipient 

stages of deregulation in the United States, energy markets have attributes that would 

not conform to the perfectly competitive markets assumed in the analysis of Section 3.1. 

Regulators are striving to correct such imperfections in current and proposed market 

structures, and might well succeed in eliminating them. However, even if future markets 

evolve that are very close to rectifying the above imperfections, uncertainties and risk 

attitudes would make it likely that participants would be reluctant to bid their marginal 

costs, and would instead add a profit margin to their bids. Given this situation, each 

participant must develop a strategy by which bids for the energy markets can be devel­

oped. In Section 1.1.3, some the factors that might affect the development of such bids 

was outlined. In the following sections, one such factor, modeling competitor behavior, 

is examined in detail. 

3.3 Modeling Competitor Behavior 

Some attempts have been made in the literature to model competitor behavior by 

using game theoretic models, intelligent agents, or by conjectural variations in oligopoly 

models. In this research, a probabilistic approach for modeling competitor behavior is 

examined. In this approach, the bids of the competing participants of an energj- bro­
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kerage are assumed to be distributed randomly. Then, based on this distribution, the 

probability of success of a participant's bidding strategy is evaluated. Next, the partici­

pant's bidding strategy can be developed as an expected value maximization approach. 

This procedure is outlined in this section, using a simple triangular distribution, for 

illustration, after which, the procedure is developed for three different distributions in 

the following sections. 

3.3.1 Using Bid Distributions - An lUiistrative Example 

Let Pb S/MWH represent a buyer's bid price for buying a unit block of energv'. Let 

c represent the marginal cost of generating this unit block of energj- if the buyer owns 

generation, or the value of this unit block to the buyer. In order to achieve a goal of 

expected profit maximization, the buyer must maximize the following objective function: 

Maximize nu a-n 
P6 (3.4) 

where: 

S{pb) is the probability of success of the bid pi, 

Ps is the sell bid to which the buy bid was matched. 

A bid may be for multiple unit blocks of energy. Regardless of the quantity of energy 

involved, the blocks of energy in a single bid are aU considered to be priced by the bidder 

on a per unit basis, at the given bid price pb-

The competition for this bid may be represented in the form a distribution of com­

peting buy bids. In order to be successful, the buyer's bid pb should be greater than the 

competing bids. The expression for expected profit cannot be directly maximized with 

respect to the decision variable Pb because the buyer does not have any information, 

in general, on the sell bids, and in particular, on which sell bid would be matched to 

Pb- However, according to the brokerage rules, the sell bid ps to which this winning bid 

would be matched, must be less than Pb in order for a saving to exist. Therefore, the 
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follo^ving relationship can be derived: 

Ps < P b = > c-pb  < c~  (3.5) 

The second part of Equation 3.5 implies (c—pb) is a lower bound to the profit from a 

successful bid to buy. The advantage of this equation is that a lower bound to expected 

profit from a bid can be derived as follows: 

Maximize 
P b  S i p b ) { c ~ p b )  (3.6) 

Maximizing the above equation hcis the effect of maximizing the lower bound to ex­

pected profit. This in general need not result in maximum expected profit. Therefore, 

the strategy resulting from maximization of the lower bound to expected profit is con­

sidered to be a "suboptimal" bidding strategy*, because of the lack of seller information. 

3.3.2 Development of a Suboptimal Bidding Strategy 

In this section, an illustrative case is presented to explain how a participant could 

develop a suboptimal bidding strategy, as defined in the previous section, using the 

available market information. First, for this illustrative case, we will assmne that the 

participant has available a subjective probability distribution to represent all the com­

peting bids for a given hour, and that this is a triangular distribution as shown in 

Figure 3.1. This shape is only assumed here for illustrative purposes. In the following 

sections, the strategy is developed for three other shapes, that are more representative 

of a practical example, and the shapes are obtained by fitting the distributions to data 

from simulations. However, the simple triangular shape will allow us to derive a closed 

form expression for the suboptimal bid, and illustrate the mechanics of the strategy 

easily. 

Let us assume that the participant, who is considered a buyer, uses a probability 

density function (PDF) as shown in Figure 3.1. 
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b b P, X nun max b 
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Figure 3.1 Triangulax PDF for buy bids. 

In this figure, the random variable X represents the competitors' buy bid. The 

quantities, bmin and bmax, represent values below and above which the competitors are 

not expected to bid. The distance d between bmin and bmax represents the possible spread 

over which the competitors axe expected to bid. The probability density- function for X 

i s  f { X ) .  By definition, the area within the triangle ACD is one. Further, let us assume 
1 d that^ AF = FD = For a given buy bid value of  X  =  pf , ,  the cumulative distribution 

function (CDF) of competitors' bids, F{pi,) is given by: 

F(pb)  =  r  KX)dX = Pr{X <  p, )  (3.7) 
y —00 

In other words, the CDF evaluated at pf, gives the probability that the competitors 

will bid a value less than or equal to pi,. Thus, if the buyer bids a value just greater 

than pb, F{pb) gives the probability of winning the block of energy over his competitors. 

Thus, F{pb) gives the probability of success of a bid Pb- This was denoted by S{pb) in 

Equation 3.4. For the triangular PDF, S(pb) is the area of the region ABE. It can be 

^Such a symmetrical distribution is assrimed only for illustrative purposes. In reality, participants 
could assume asymmetrical distributions. 
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shown that this area is given by: 

n \ -iPb bmin) SM = ^5 (3.8) 

if Pb < bmin + and by: 

(3.9) 

if bj j i i j i  + 2 — Pb ^ ^max' 

The lower bound to expected profit from bidding Pb is obtained by substituting this 

expression for S{pb) in Equation 3.6 and is denoted by Eib{pb)-

Applvong the first-order necessary conditions to Eibipb)-. we can solve for the subopti­

mal buy bid price, pj. This is done by taking the first derivative of the expression given 

by Equation 3.10 with respect to Pb, and setting it equal to zero. Since we have two 

expressions for S(pb), we must solve both forms of the first-order necessary condition. 

Then, depending on where the solution for pb lies, to the left or the right of point F in 

Figure 3.1, the solution obtained from using the corresponding form of S(pb) should be 

selected. The closed-form solutions for the suboptimal bid for the two possibilities are 

given by the following equation: 

The second-order sufficient condition is obtained by differentiating Equation 3.10 

twice w.r.t. pb, and setting the resulting expression to be less than zero. This is satisfied 

S»(Ps) = S(pi,).(c - Pi) (3.10) 

'mtn 

Pb — bmin — 

Pb = 
46r„ax + 2C - yj{2bmax + c)2 - 4" icbjr,ax ~ 

6 
d 

bmin "l~ 2 — (3.11) 
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if c > bmin- This condition translates to the requirement that the marginal generating 

costs of the buyer be greater than the lower limit of the competitor's bid. If c < bmin: 

the solution for pj is c itself. This gives a zero probability of acceptance. In other 

words, if the buyer can generate power at a lower cost than the competitor's lowest 

buy bid, it is not worth bidding more than marginal cost. On the other end of the 

spectrum, if pl > bmax-. the buyer should not bid a price value greater than bmax-. since 

the probability of acceptance is not increased beyond the probabilitv* of acceptance at 

bmaxi [S{bmax) = !]• Thus, for c < b^in, the suboptimal bidding strategy described 

dictates that the buyer should bid according to Equation 3.11, upto a maximum of bmax-

The corresponding values of the probability of acceptance, S{pb), and the expected value 

of the lower boimd on the savings, Eib{pb), are obtained by substituting this value for pl 

in Equations 3.8, 3.9 and 3.10. 

Similar arguments can be appUed to the case of the participant who is considered a 

seller. For a seller to be successful, the selling bid Ps must be the lowest bid for a given 

block of energy. Thus, the probability of success of a sell bid Ps, S(ps) is given by the 

following equation: 

S(Ps)  =  Pr{ps  <X)  = l -  Pr{X < Ps)  (3.12) 

Figure 3.2 shows such a triangular distribution for a seller. Again, the area of the 

triangle ACD is 1 by definition. The complement of the CDF evaluated at Ps is shown 

by the shaded area, region BED. 

In other words, the probability of success is the complement of the probability that 

the seller's bid Ps is higher than all the competing bids. But the rightmost term in the 

above equation is simply the CDF of competing sell bids, evaluated at Ps- Thus, the 

probability of success for a seller can also be related to the CDF of the competing sell 

bids, in a manner very similar to that for a buyer. Closed form expressions for a seller's 

suboptimal bid could also be derived. 
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Figure 3.2 Triangulax PDF for sell bids. 

3.3.3 A Numerical Example 

In this section, the mechanics of the suboptimal bidding strategy for the triangular 

distribution are illustrated by means of a numericad exsmiple. Let us assume that the 

buyer's notion of the competitors' bidding behavior corresponds to the values for bmin 

and bmca in Table 3.1. 

Let us also assume that the marginal cost of generation of the buyer varies according 

to the values for c. Then, for each value of c, the corresponding value of the suboptimal 

bid, the probability of acceptance, and the maximum expected lower bound on profits are 

given in Table 3.1, based on the first part of Equation 3.11, and the following reasoning 

where the equations yield unacceptable values. Cases 1 and 2, where c = 8 and c = 10 

correspond to cases where the buyer's generating costs are lower than or equal to bmin-

For these cases, the suboptimal strategy dictates that the buyer should not bid above 

the marginal cost of generation. Thus, the suboptimal bid is the marginal cost itself. 

The probability of acceptance for these cases is zero. In Cases 3 and 4, where c = 12 and 
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Table 3.1 Variation of suboptimal values with marginal 
cost - triangular distribution. 

Case ^min ^max c Pl S{p l )  Eibipb) 
1 10.00 15.00 8.00 8.00 0.0000 0.0000 
2 10.00 15.00 10.00 10.00 0.0000 0.0000 
3 10.00 15.00 12.00 11.33 0.0711 0.0474 
4 10.00 15.00 13.75 12.50 0.5000 0.6250 
5 10.00 15.00 14.00 12.60 0.5386 0.7540 
6 10.00 15.00 16.00 13.26 0.7592 2.0802 
7 10.00 15.00 18.00 13.72 0.8704 3.7253 
8 10.00 15.00 25.00 14.43 0.9735 10.2899 

c = 13.75, the suboptimal strategy yields a positive probability of acceptance S{pl ) ,  and 

an increasing maximum lower bound on expected profit Eibipl). Also, for these values of 

c, the solution for pl lies to the left of point F in Figure 3.1, so we choose Equation 3.11 

to determine the suboptimal bid. In Cases 5 through 8, where c = 14, c = 16, c = 18, 

and c = 25, respectively, the solution for pj lies to the right of point F in Figure 3.1, 

so we choose the second part of Equation 3.11 to determine the suboptimal bid. These 

considerations are illustrated in Table 3.1. It can be seen that as the suboptimal bids 

increase in price, so do the corresponding probabilities of acceptance and lower bounds 

to expected profits. 

These values are implicitly based on two assumptions. The first assumption is that 

the buyer's goal is to maximize expected value of savings. The second assumption is 

that the buyer has a notion that the competitor's bidding behavior will obey a triangular 

density function. The former assumption could be varied to fit various performance goals. 

For example, if the participant is a utility that is only interested in keeping a certain 

plant shut-down, regardless of the cost of energy, then the goal could be to maximize 

probability of acceptance, instead of maximizing expected value of savings. The latter 

assumption admittedly makes the problem easier to solve in the closed form. However, 

if the buyer assumes a more complex density function, the general principles of the 
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strategy still can be applied, with a higher degree of computational intensity. In the 

following sections, three such functions are explored. 

3.4 Polynomial Modeling of a Bid Distribution 

In this section, a suboptimal bidding strategy based on directly modeling the CDF 

of competing bids is developed. This is because of difficulties in fitting a model to 

the PDF, followed by the numerical complexities in integrating this PDF to obtain the 

CDF. A CDF is usually smoother than a PDF, and hence is easier to fit a model to. 

An approximate CDF can be obtained by constructing a cumulative relative frequency 

(CRF) curve from the histogram of historical transaction prices. Fitting a polynomial 

curve to this CRF curve then 5delds an expression for the CDF as function of bid price. 

Figure 3.3 shows an example where a polynomial of degree 5 is used to fit a CRF curve 

obtained from historical transaction prices. These historical prices are obtained from 

simulations performed on a brokerage simulator described in Chapter 4. A polynomial 

of degree n is assumed in this section, to represent the CDF of competing bids. 

Now, following similar arguments as that presented in Section 3.3, we equate the 

probability of acceptance, S(pi,) to be the CDF of the competing bid distribution, F(pi,), 

evaluated at Pb. The objective now becomes: 

Maximize 
P b  F { p b ) i c - p b )  (3.13) 

Let us assume that the result of fitting a polynomial of degree n to the CRF curve 

results in the following equation for CDF of competing bids: 

F{X) = ag + CliJC + 02-^^ "l~ — + ^ (3-14) 

The competing bids are represented by the random variable X, and the coefficients 

of the polynomial in Equation 3.14 are obtained by regression. For a buyer, F{pij) will 
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Figure 3.3 Fitting a polynomial to bid data. 

represent the probability of success of bid pj following the arguments of Section 3.3.2. 

Thus, the following expression can be derived for the lower bound to expected profit 

from bid pb, in the case of a buyer using the polynomial model: 

Eibipb) = S{pb){c - Pb) = F{pb){c - Pb) (3.15) 

Using Equation 3.14, this leads to: 

Eib(pb) = (c - pb)iao + aiPb + a2Pb^ + ... + + OnPb'') (3.16) 

Applying first order necessary conditions to the above equation will result in the 

following expression^: 

(n + l)(can+i - an)P6" + n{can - a„_i)p6"~^+ 

. . .  + 2 { c a 2  —  a i ) p b  +  { c a i  —  a o )  =  0  (3.17) 

^In Equation 3.17, the coefficient On+i is a fictitious coefficient introduced only for reasons of sym­
metry. It is set to zero before the equation is solved. The advantage is that the coefficients of the first 
order condition can now be expressed by a general formuJa, which helps in computer implementation. 
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The derivation of the above expression is given in Section A. 1.1. The solutions of 

Equation 3.17 that satisfy second order sufficient conditions, and the condition pb < c 

(the buyer should not bid a value greater than generating cost) will be the desired subop-

timal bids. In order to find the best bid in case of multiple solutions for Equation 3.17, 

the participant can simply pick the bid that results in the maximum expected lower 

bound to profit that result from Equation 3.16. 

A similar approach may be followed by a seller using a polynomial model. In this 

case, the probability of success of a sell bid ps will be given by the following equation: 

S(ps )  = Pr{ X  > p s )  =  l -  F { p , )  (3.18) 

In other words, the seller must have the lowest bid compared to his competitors. 

Also, the lower bound to expected profit will now be given by 

EibiPs) = S{ps){ps - c) = (1 - F(j}s ) ) iPs  -  c)  (3.19) 

With these modifications, it can be shown that the equation for suboptimaJ seller's 

bid is given by^: 

(n + l)(ca„+i - an)ps" + "(con -

+2(ca2 — (^i)Ps + (cfli — qq + 1) =0 (3.20) 

Thus, the participant can build a realistic model of competing bids by polynomial 

modeling, and incorporate this model in the bidding decision easily. The advantage 

of the polynomial model is the ubiquitous nature of polynomial regression modules in 

most spreadsheet packages. So obtaining such a model from historical data is relatively 

simple. Another advantage is that for lower degree polynomials, a closed form expression 

for suboptimal bids can be derived from the first-order necessary conditions. Thus, the 

polynomial model is a good candidate for modeling CDF of competing bids. 

^Here a„+i is again zero, and was included for assistance in computer implementation. 
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Table 3.2 Variation of suboptimal 
values with marginal cost -
polynomial distribution. 

Case c Pb S{pl)  Eibipl) 
1 8.00 8.00 0.0000 0.0000 
2 10.00 9.97 0.0325 0.0010 
3 12.00 10.70 0.5020 0.6533 
4 14.00 11.12 0.6279 1.8034 
5 15.00 11.30 0.6616 2.4490 
6 17.00 11.63 0.7123 3.8246 
7 17.50 11.73 0.7246 4.1838 
8 20.00 13.13 0.8968 6.1605 

Some numerical examples are given in Table 3.2 to illustrate the variation of subop­

timal values with the cost of generation, for the case of a buyer. The values given in 

Table 3.2 are based on the assumption that a polynomial fit is obtained by fitting a fifth 

degree polynomial to a sample of data that represents an approximation to competing 

buy bid distribution. Although the values used for c are the same as in Table 3.1, the 

resulting suboptimal bids are different. This is because the distribution parameters in 

this case, are obtained from curve fitting a set of data, and not assumed as in the case 

of the illustrative example for the triangular PDF. 

Let the curve fit result in the following equation for F{X): 

F { X )  =  

0.0013X^ - 0.0930;\:^ + 2.5674J5£:3 - 35.1178X2 + 238.4708X - 643.4213 (3.21) 

The sample data curve and the fitted curve are as shown previously in Figure 3.3. 

Details on obtaining such a sample and results of simulations based on this method are 

given in Chapter 5. Then, by using the approach developed in this section, the buyer's 

suboptimal bids cgin be computed based on Equation 3.17. These are shown in Table 3.2. 

It can be seen from this table that for very low costs of generation, such as 8 $/MWH, 

the best bid is the same as the marginal cost. This is because the suboptimal bid for 
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this cost by polynomial modeling yields a v-alue for suboptimal bid that does not satisfy-

pb < c. In other words, such a bid would result in a negative lower bound on expected 

profit. Thus, for this cost, the best value to bid would be the generating cost itself. The 

table shows a zero probability of acceptance, and zero expected profits corresponding 

to this bid. But for higher values of generating cost, it can be seen that the procedure 

results in suboptimal bids that lead to higher probabilities of acceptance (approaching 

1) and higher lower bounds to expected profit (approaching c — pj). 

The disadvantage of the polynomial fit is that for a good fit, a higher degree poly­

nomial is required. This leads to multiple solutions that must be evaluated. .AJso, it 

is difficult to obtain a set of coefficients for higher degree polynomials, that satisfy the 

requirement of the CDF that the value of F(X) be between 0 and 1. In addition, the 

PDF of a polynomial CDF is also a polynomial. In general, the shape of such a PDF 

is hard to interpret, and might not resemble a normal distribution. While this is not 

a serious problem, there exist some other distributions that are better candidates than 

the polynomial distribution from these points of view. Two of these are investigated in 

the following sections. 

3.5 Incomplete-Beta Function Modeling of a Bid Distribution 

In this section, the CDF of competing bids is modeled in the form of an incomplete-

beta function, whose shape is defined by two shape parameters. In other words, the 

competing bids are assumed to be distributed according to a beta distribution. The beta 

distribution has been used to fit distributions whose range of variation is known [64]. 

The mean of the distribution depends on the ratio of its shape parameters. The variance 

of the distribution is inversely proportional to the magnitude of its shape parameters. 

As this magnitude increases, the distribution tends towards a normal distribution. The 

following analysis defines and develops the incomplete-beta function as a possible way 
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to model competing bids. 

The expression for the Beta function is defined as follows [65]: 

B{a, b) = r  (3.22) 
Jo 

where: 

a.b are shape parameters, 

B{a, b) is the value of the Beta function evaluated at a, b. 

The incomplete-beta function of a variable x is defined by the following equation 

[65]: 

Figure 3.4 shows examples of the incomplete-beta function for various values of the 

shape parameters a, and b. By regression, the appropriate parameters can be obtained 

that fit the incomplete-beta function to the cumulative relative frequency (CRF) curve 

obtained from market data. The mathematical property of the incomplete-beta function 

of a normalized variable x is that the limiting values are 0 and 1. Thus, the required 

property of the CDF is satisfied by this fimction. Also, upon differentiating equation 

3.23, we may obtain the PDF resulting from such a CDF. The shape of this PDF is 

plotted in Figure 3.5. It can be seen that this is a bell shaped curve and can be used 

as an approximation for a normal distribution. The choice of the parameters results in 

shifting the mean of the PDF to the right or left. 

In addition, it is relatively easy to implement numerical evaluation of the function 

and its derivative, when compared to other standard probability distributions. Also, 

the second derivative of the function is a polynomial, and so concavity conditions can 

be easily established. Thus, the incomplete-beta function is a good candidate for a 

distribution to fit market data. 



www.manaraa.com

48 

0.9 

0.3 

° 0.7 

a =, 
a = 5 
b = 5 S 0.4 

a = 25 
b = 10 

0.3 

0.1 

0.1 OS 
X 

0.6 0.8 0.3 0.4 

Figure 3.4 Incomplete-beta function. 

Shape parameters: 

a = 25 

b = lO 

0.9 0.1 0.5 
X 

0.6 0.7 0.3 0.4 0.8 

Figure 3.5 PDF from incomplete-beta CDF. 
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3.6 Suboptimal Bidding Using the Incomplete-Beta Function 

Now, if we use an incomplete-beta function with parameters a, and b to represent 

the CDF, we need to normalize the variable Pb so that it can var\* between 0 and 1. Let 

us effect the following normalization: 

Pa = mx => X = — (3-24) 
m 

where m is the largest unit price in $/MWH that the participant infers as "sufficient" 

to virtually ensure acceptance. In other words, the participant considers m to be the 

farthest outlier of competing competing unit buy bids. Having performed this normal­

ization, let us define a new objective function that is in terms of x as follows: 

M aximize 
X F(x)(c — mx) (3.25) 

We can now insert the incomplete-beta function in place of F(x} to arrive at the final 

objective function. 
Maximize 

X Eib{x) (3.26) 

where Eib{x) is the lower bound to expected profit and is given by: 

(3.27) 

For a seller, a very similar procedure would result in the following Eib(x): 

E„{x) = (tm - c) fl - (1 - (3-28) 

The normalization procedure is also the same, with Ps replacing Pb- The above expres­

sions can be numerically maximized to determine the value of x (and hence pb and p,) 

that maximizes the lower bound to expected profit. This suboptimal bid is then subject 

to heuristic tuning along the lines of that presented in [2]. However, before we proceed 

to maximize the above objective function,  i t  is  worthwhile to derive condit ions on x 
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for Eib{x) to be concave, in terms of the parameters a, b, m, and the marginal cost c. 

If these conditions lie beyond the constraint boundcu:\- for x (x lies between 0 and 1), 

then it is futile to attempt numerical maximization, and we assume that as a fall back, 

the participant bids the marginal cost. To determine these conditions, we differentiate 

Eib{x) twice w.r.t. x and set the second derivative to be negative. 

After performing some simplifications, shown in Section A.2.2, we arrive at the fol­

lowing expression: 

Elb(x) < 0 =>• (a-h b)mx^ — {(a + l)m-h c(a-h b — 2)}x + c(a — 1) < 0 (3.29) 

This condition holds if x lies between the roots of the quadratic expression. This can 

be easily checked. It can be shown that the concavity conditions for the seller are also 

identical to the above condition. 

If concavity condition holds, then we have a unique maximum over the allowable 

range for x. Figure 3.6 shows such a case where a buyer with a marginal generating 

cost of 12 S/M"V\TI is considering the bidding decision. The variation of En,{x) with x is 

shown for a maximimi bid price of 14.99 S/MWH. It can be seen that the lower bound 

to profit has a maximum of 0.6187 $/MWH, at x = 0.7143. 

The value obtained for x is in terms of the normalized bid price. To obtain the 

suboptimal bid price in $/MWH, we multiply x by m, the normalizing maximum bid 

price. This results in a suboptimal bid price of 10.7074 $/MWH with a probability of 

success of 0.4786. This maximum can be numerically isolated by using any of a number of 

classical techniques, such as Brent's method, which is a hybrid of quadratic interpolation 

and golden section search. Source code for the Beta function, incomplete-beta function, 

and for Brent's method are readily available in the literature, and in this research were 

obtained from the book Numerical Recipes in C [65]. 

Similar to Table 3.2, suboptimal values can be calculated for the above case of an 

incomplete-beta function with a = 25, and 6 = 10 for various values of c. These are 
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Figure 3.6 Variation of Eib{x) with x. 

presented in Table 3.3. The values for c used are once again the same as the values used 

in the previous two distributions, but the resultant values from optimization are different 

because of the choice of parameters. Again, it can be observed that the procedure results 

in suboptimal bids that lead to higher probabilities of acceptance (approaching 1) and 

higher lower bounds to expected profit (approaching c — pl), as c increases. 

Table 3.3 Variation of suboptimal values with 
marginal cost - beta distribution. 

Case c X* Pb S{pl)  Eibipl) 
1 8.00 0.5036 7.55 0.0051 0.0023 
2 10.00 0.6180 9.26 0.1074 0.0790 
3 12.00 0.7108 10.66 0.4607 0.6196 
4 14.00 0.7681 11.51 0-7506 1.8664 
5 15.00 0.7856 11.78 0.8241 2.6567 
6 17.00 0.8085 12.12 0.8998 4.3915 
7 17.50 0.8126 12.18 0.9108 4.8442 
8 20.00 0.8279 12.41 0.9446 7.1691 
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3.7 Incomplete-Gamma Function Modeling of a Bid Distribu­

tion 

In this section, the CDF of competing bids is modeled in the form of an incomplete-

gamma function. In other words, the competing bids are assumed to be distributed 

according to a gamma distribution. The gamma distribution has been used to represent 

many physical phenomena [64] in areas such as failure studies, economics and insurance 

risk theory. It provides a flexible skewed density over the positive range. The following 

analysis defines and develops the CDF of the gamma distribution, the incomplete-gamma 

function, as a possible way to model competing bids. 

The expression for the Gamma fimction is defined as follows [65]: 

r(a) = r (3.30) 
Jo 

where: 

a is a shape parameter, 

r (a) is the value of the Gamma function evaluated at a. 

The incomplete-gamma function of a variable x is defined by the following equation 

[65]: 

It has the limiting values P(a,0) = 0 and P(a, oo) = 1. Thus the required property 

of a CDF is also satisfied by this function. 

Figure 3.7 shows examples of the incomplete-gamma function for various values of 

the shape parameter a. Also, the PDF resulting from the incomplete-gamma CDF can 

be obtained by differentiating Equation 3.31 and is plotted in Figure 3.8 for a specific 

value of a. It can be seen that this PDF is also bell shaped, although the right outlier of 

the PDF does not occur at a finite value of x, unlike the incomplete-beta function. This 
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is because the domain of the incomplete-gamma function is not normalized between 0 

and 1. In the context of the strategic bidding application developed in this research, 

this means that no normalization of the bid-price by a ma^dmum bid-price is necessary. 

In addition, similar to the incomplete-beta function, numerical evciluation of the 

incomplete-gamma function and its derivative is relatively simple. The second derivative 

is a polynomial, and concavity conditions can be easily established for objective functions 

such as those described in the previous section. Thus, the incomplete-gamma function is 

a good candidate for a distribution to model market data. However, because of the use 

of only a single shape parameter a, it was observed that a good fit to market data was 

difficult to obtain when using the incomplete-gamma function. Due to this limitation, 

simulations supporting incomplete-gamma modeling were not performed. Nevertheless, 

it is of value to develop a theoretical procedure similar to the incomplete-beta function 

approach of Section 3.6. Such a procedure could be applied if a satisfactory fit were 

obtained using an incomplete-gamma function. 

o.a 
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Figure 3.7 Incomplete-gamma function. 
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Figure 3.8 PDF from incomplete-gamma CDF. 

3.8 Suboptimal Bidding Using the Incomplete-Gamma Func­

tion 

In this section, the theoretical development of a suboptimal strategy by using incomplete-

gamma function modeling is presented. Proceeding in a manner similar to that of Sec­

tion 3.6, we have the following lower bounds to expected profit for a buyer and a seller 

respectively: 

The above expressions can be numerically maximized, with the resulting suboptimal 

bid being subject to heuristic tuning. Concavity conditions for both buyer and seller, 

derived in Section A.2.3, result in the following inequation: 

(3.32) 

(3.33) 

Bl'i,(x) <0 => — (a + c+ l)p + c(a — 1) < 0 (3.34) 
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where: 

p =  pb for a buyer, 

p = ps for a seller. 

This condition holds if the bid price lies between the roots of the above quadratic 

expression. Unlike the case of incomplete-beta modeling, there is no obvious way to check 

for concavity because the domain of the incomplete-gamma function is unboiinded on 

the positive side. However, participants may perform sanity checks to see if there exists 

a maximum to the objective function within a certain "allowable" range of bid prices 

before proceeding with the numerical maximization. If the concavity condition holds, 

then we have a unique maximum of the objective function. Figure 3.9 shows such a case 

where a buyer with marginal generating cost of 12 $/MWH is considering the bidding 

decision. The variation of Eib{pb) with pi, is shown. It can be seen that the lower bound 

to profit has a mciximum of 1.67 $/MWH, at p(, = 8.5145 S/MWH. 
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Figure 3.9 Variation of Eibix) with x. 
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The corresponding probability of success of 0.4789. This maximum can be numeri­

cally isolated by Brent's method [65]. 

Similar to Table 3.3, suboptimal values can be calculated for the above case of an 

incomplete-gamma function with a = 9, for various values of c. These are presented in 

Table 3.4. It can be observed that the suboptimal bidding procedure results in bids that 

lead to higher probabilities of acceptance (approaching 1) and higher lower bounds to 

expected profit (approaching c — pi,*), as c increases. 

Table 3.4 Variation of suboptimal 
values with marginal cost -
ganmia distribution. 

Case c Pb Sipl) EibijPl) 
1 8.00 6.34 0.1897 0.3150 
2 10.00 7.52 0.3409 0.8451 
3 12.00 8.51 0.4789 1.6692 
4 14.00 9.34 0.5881 2.7411 
5 15.00 9.70 0.6320 3.3518 
6 17.00 10.32 0.7022 4.6896 
7 17.50 10.46 0.7167 5.0444 
8 20.00 11.08 0.7750 6.9134 

3.9 Other Candidates for Modeling a Bid Distribution 

In selecting the distribution with which to model competitor behavior, this author 

must admit to having resorted to the trial-and-error algorithm to a certain extent. In 

general however, a good candidate distribution for modeling competitor bids must have 

the following properties: 

1. The distribution must be continuous, and must have a domain that is bounded 

on the positive axis, so that only positive bid prices are modeled with a non-zero 

probability. 
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2. The shape of the distribution should be flexible by changing the parameters, so 

that market data can be fitted relatively easily. 

3. If a closed form expression for the CDF is not available, then the distribution 

should be numerically integrable in an eflScient manner. This is because a large 

number of bids might have to be submitted in a relatively short amount of time, 

and the process should not become computationally cumbersome. 

Considering the above factors, several distributions were available to this author. 

The selection of the beta and the gamma distributions from these was made solely 

on the basis of source code being readily available to integrate them [65]. However, 

the following is a list of some other distributions that might be good candidates for 

modeling competitor bids, provided that a suitable fit can be obtained for the market 

information. The primary source of information on the distributions described in the 

following sections is Probability Distributions [64], a compact booklet describing various 

distributions, their properties, and their potential appUcations. 

For all of the following distributions, similar shapes to those presented in Figures 3.4, 

3.5, 3.7, and 3.8 can be generated, with an appropriate choice of parameters. Thus, all 

of the following distributions satisfy the properties of the CDF, as well as resemble the 

bell shape of the normal distribution. 

3.9.1 The Pareto Distribution 

This distribution has a PDF of the following form: 

/(x;A:,q;) =-^ (3.35) 
jl 

where: 

a is a parameter, 

X > A: > 0. 
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The advantages of this distribution are that it is a relatively simple distribution to 

implement, and inherently bounds the variable x to be greater than k. This could be 

useful in the instances where participants have a good estimate of the lower (or upper) 

limit of the competing bids. Also, this distribution is widely used for modeling stock 

price fluctuations, personal incomes and other such empirical phenomena, and could 

prove to be a good model upon further study. 

3.9.2 The Exponential Distribution 

This distribution has a PDF of the following form: 

where: 

A is a parameter, 

X > 0. 

The advantage of this distribution is that it is relatively simple to implement. It is 

also a special case of the gamma distribution with the shape parameter a = 1. Its appli­

cations are usually in the field of lifetime studies. Applicability to economic phenomena 

such as the bid modeling area is yet to be studied. 

3.9.3 The Weibull Distribution 

This distribution has a PDF of the following form; 

where a > 0 and 6 > 0 are parameters, 

I > 0. 

The CDF of this distribution is not easily implemented. However, it provides extra 

flexibility over the exponential distribution. Its applications have been in the area of 

f ix:  A) = Ae"^ (3.36) 

f{x- ,a,b) = abx^ (3.37) 



www.manaraa.com

59 

breaking strengths of materials and reliability-. Applicability to economic phenomena is 

yet to be studied. 
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4 BROKERAGE SIMULATOR 

In Chapter 3, suboptimal bidding strategies were presented, which incorporate com­

peting bids in the form of distributions, and production costs, to calculate a bid price 

that maximized the lower bound to expected profit from the bid. In order to test these 

strategies and to develop additional strategies, we have developed a brokerage simulator, 

which is described in this chapter. The simulator consists of a bid matching module that 

performs the function of the broker. Various participants can be simulated by submit­

ting different bid data to the bid matching module. The results from the matching are 

made available to other modules that calculate the performance of the individual partic­

ipants based on the results of the bid matching process, which is a simulation of trading 

activit}'. Thus, an energy brokerage market is simulated, and from the outputs, the bid­

ding strategies of the participants can be evzJuated. Such a simulator could be used by 

the participants in a real energy brokerage for a variety of functions, such as evaluating 

their strategies, observing the outcomes of the strategic bidding activity, modeling the 

behaviors and strategies of key competitors, and training their energy traders. 

4.1 Rationale for Simulation 

The advantages of using a simulator for research purposes are as follows: 

• Strategies can be formulated and tested easily in the controlled environment of a 
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• Market data for future use can be generated by performing a few rounds of bro­

kerage simulation. Such market data may be difficult to obtain otherwise. 

• Market rules and structure can be modified easily in a simulator, thus allowing the 

extensive study of different strategies under different conditions. 

• Simulations help in understanding some of the intricate relationships and effects 

of various market factors on the effectiveness of strategies. 

Thus, there are several advantages in developing a brokerage simulator for research 

purposes. However, some difficulties exist when participants wish to use such a simulator 

as a tool to improve their performances in real life situations. These are discussed next. 

• Modeling all the rules of the energy brokerage market to the fullest extent is a 

difficult, time-consuming and ongoing job. Participants might not wish to invest 

the necessary development time and money required. An option might be to 

purchase an off-the-shelf product that offers flexibility in modeling various types 

of energy markets. It remains to be seen how much choice participants would have 

in such products, and how flexible the products would be. The development and 

enhancement costs could be distributed among a number of participants, in the 

case of such products. 

• Modeling competitors in the simulator would mean that participants should have 

some amount of intelligence on the past bidding histories of these competitors. 

Such intelligence could prove expensive, and its accuracy hard to estimate. An 

alternative would be to use publicly available transaction price information as a 

proxy to bid histories, and to modify this information heuristically if necessary. 

This approach was investigated with limited success in this research and results 

are reported in the next Chapter 5. 
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• The success of using past histories to guide future strategies is dependent on future 

market conditions being similar to those used in the development of the strategv". 

If this condition is not met, then the bid distributions used in deriving the results 

of Chapter 3 would be inaccurate, and perhaps render the strategy- to be of poor 

quality. This is a generic problem inherent in many trading strategies in other 

markets as well. Thus, peirticipants should consider the results from simulations 

in the light of current market conditions and up-to-date information. Performing 

simulations for a wide variety of system conditions could be one way of mitigating 

this problem. 

In spite of the above difficulties, usiug a simulator as a testing and development tool 

for real energy floor trading does have the same advantages as those listed for research 

purposes. In addition, such a simulator can also be used by participants for training 

purposes. A less likely, but possible use for such simulators would be by regulators to 

test various market structures and their effects on electricity prices, market power of 

individual participants, etc. 

4.2 Simulator Overview 

Figure 4.1 shows a functional overview of the different modules that constitute the 

brokerage market simulations performed to test the strategies developed in Chapter 3. 

Most of the modules shown in the figure were developed and implemented as part of 

this research. The main programming environment was C/C-l—h on a HP-9000 CllO 

Workstation. Some of the modules were also developed as Matlab v.4.0 m-files. The 

different modules interface through text input/output files, and are invoked and managed 

by Perl scripts. The use of Perl enhances the flexibility of the simulator. The free nature 

of Perl also adds to portability to different platforms. As nearly as possible, programming 

language usage conforms to .A.NSI standards. The compilers used were Gnu's gcc and 
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Figure 4.1 Brokerage simulator - functional overview. 
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g-i-+. This further enhances portability- to various UXDC platforms. Porting to a PC 

platform has not been examined at this point. 

4.2.1 Bid Matching Module 

The bid matching module performs the function of the broker in an energy brokerage. 

The objective of the bid matching module is to match buy and sell bids in a manner such 

that the net savings (the difference between buy bid and sell bid) is maximized. In the 

simulator, it is implemented as a program written in C++. The inputs to the module 

are hourly bids to buy or sell energy, at a given price. The bids are in fixed block sizes 

(of say, 20 MW). The algorithm for bid matching is the high-low matching algorithm, 

commonly found in the literature for fast and simple implementations. In this algorithm, 

the buy bids are sorted in descending order, the sell bids are sorted in ascending order, 

and the highest buy bid is matched to the lowest sell bid, and so on. Matching stops 

when the current buy bid under consideration is less than the corresponding seU bid, 

i.e., no further savings are realized by matching. The bids that are not matched are 

considered rejected. This algorithm is equivalent to an LP solution in the absence of 

transmission constraints. In the presence of transmission, the solution is suboptimal. 

The following are the inputs to the bid matching module: 

1. Bids from company I interface 

2. Bids from bid builder module 

3. Bids from other bid sources 

The following is an example of a bid file. As long as the information shown in the 

bid file is present in the order shown, the bid matching module does not discriminate 

between bids from any of the above three sources. 
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Company_Name(Max 20 chars) 

cat 

Beg_Hr Eiid_lir Split/All #Blocks Qty Price Type 

1 1 Split 1 20 8.99 Buy 

1 1 Split 1 20 8.83 Buy 

1 1 Split 1 20 9.09 Sell 

1 1 Split 1 20 9.15 Sell 

The following axe the outputs from the bid matching module: 

• If transmission is not considered, the bid matching module produces the final 

match list. In this case, the outputs are: 

1. Individual match information files. 

One file is written for each participant. It contains all the matches that the 

participant was involved in, either as a buyer or as a seller, in each hour during 

the bidding period specified. The information contained includes buyer name, 

seller name, hour number, quantity bought/sold, and the transaction price. 

The transaction price is set at the average of the buy and the sell bids. This 

file is considered "private". In other words, when the simulator is upgraded 

for implementation on a relational database, this file can be accessed only by 

the concerned participant. 

2. Price and volume information files. 

One file is written for each hour in the bidding period. It contains the hour, 
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quantity and transaction price of ever>' match for that hour. No information 

is displayed regarding the buyer or seller. This information is considered 

"public", and may be accessed by all participants. 

3. Master output file for transmission evaluation. 

Even if transmission option is turned off, a file is produced containing all the 

information present in the individual match information files, for use by the 

transmission evaluation module if need be. A sample master output file is 

shown below. The information includes seller, buyer, hour number, block size 

in MW, transaction price, buy bid, and sell bid. 

cat Sell to: wings 1 20 9.04 16.62 12.83 

cat Sell to: swamp 1 20 9.09 15.22 12.155 

cat Sell to: swamp 1 20 9.15 14.58 11.865 

4. Output listing of the matching process 

A list file is produced containing number of bids submitted by each partic­

ipant, number of bids matched, and all transaction information, including 

any error messages. The purpose of this file is for debugging purposes, but 

the information can be used for purposes of evaluating market structure and 

performance. 

• If transmission is considered, the bid matching module only produces the master 

output file for transmission evaluation, and the output listing of the matching 

process. 

4.2.2 Transmission Network Module 

The transmission network modeling included in the brokerage simulator is of rudi­

mentary detail. This is because, at the time of developing this simulator, it is still not 
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cleax what the consensus model is going to be in the power industry for modeling trans­

mission pricing, available transmission capacity, loss allocation, etc. Thus, a verj* simple 

DC-power flow capabilitj* has been added with the view that when such a consensus 

model evolves in the market, this transmission network model can be upgraded to re­

flect current models. Currently, the module is implemented as a C+-I- program that 

can be invoked by the user if desired. Currently, the network module uses the master 

output data described above, and evaluates each match to detect thermal line flow eind 

economics violations. The following assumptions are made: 

1. Each participant has a preassigned bus in a fixed system network, which is the 

designated power injection bus for that participant. All transactions that result 

from bids are modeled as positive (negative) injections of the bid quantitj- at the 

seller's (buyer's) designated bus. 

2. Only thermzJ line limits are considered in the model. 

3. Matches (proposed transactions) from the bid matching module are considered in 

decreasing order of the magnitude of the resultant savings. If a match results in a 

violation of thermal limits, then it is rejected. 

4. The thermal limits are obtained from an input file. Under the current model, the 

thermal limits for all periods are assumed to be the same, and are assimied to in­

clude any previously scheduled transactions excluding those accepted by the broker 

through the bidding process. These transactions include any bilateral transactions 

entered into by participants. 

5. Transmission pricing is performed by the MW-mile method, wherein the resulting 

transmission charge is determined as the change in net MW-mile costs caused by 

the transaction. The net MW-mile costs are calculated as the sum of the product 

of the absolute value of line flows, the corresponding line's MW-mile tariff, and 
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its length in miles. The tariSs and the line lengths are assumed to be known in 

advance to the network module. Each line has its own unique MW-mile tariff. 

In this model, only one tariff is assumed for all times. However, it is a relatively 

simple task to provide the capability of multiple tariffs, one for each period, such 

as on-peak, off-peak, etc. 

6. If the transmission charge for a match is more than the savings resulting from the 

match, the match is rejected. 

7. Transmission charges from the final set of accepted matches are equally divided 

between the seller and the buyer. 

8. The assumption made regarding transmission charge allocation is that all fees are 

initially paid to the broker or some other entity, who disburses the charges to the 

appropriate owners. In other words, transmission charge allocation is not dealt 

with directly in the simulator. 

9. Transaction fees payable to the broker are not currently modeled in the simulator. 

While the above assumptions are admittedly very limiting to the capabilities of the 

network module, they have been made to simplify the implementation. If a more detailed 

network module were available to the participants, there is theoretically no reason why 

the current network module caimot be replaced by the more detailed module. 

The inputs to the network module are: 

1. The master output file from the bid matching module. 

2. Network data files with line reactance, line length, and MW-mile tariff information. 

The outputs from the network module are; 

1. Match information files that are written for each participant with details of trans­

actions that the participant was involved in. The following sample is an example 
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of the match information written by the network module. It contains informa­

tion regarding seller, buyer, hour, quantity, transaction price and transmission 

cost. For a seller, the price information represents revenue, and transmission cost 

information represents expenditure. For a buyer, both represent expenditure. 

Hour Qty Price TraasCost 

cat Sell to: wings 1 20 12.83 5. .35 

cat Sell to: swamp 1 20 12.155 3. ,775 

cat Sell to: farm 1 20 9.515 5. 14167 

2. Price information files for each hour containing limited details of all the matches 

that are approved for that hour. The following sample is from a price information 

file. If transmission is not modeled, then this file is written by the bid matching 

module, without the transmission price information. This data is considered public 

and may be accessed by all participants. 

Hour Quantity Price Transmission 

1 20 12.83 5.35 

1 20 12.155 3.775 

1 20 11.865 3.79167 

3. Accepted transaction files that are considered confidential and are not accessible by 

anyone except the broker or the independent transmission system operator (ISO) 

for evaluation purposes. The following is a sample from the accepted transactions 

file. 

cat Sell wings 1 20 9.04 16.62 12.83 

Energy Cost Savings = 151.6 

Transmission Costs = 5.35 
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cat Sell swamp 1 20 9.09 15.22 12.155 

Energy Cost Savings = 122.6 

Transmission Costs = 3.775 

4. Rejected transaction files which are considered confidential and are not accessi­

ble by anyone except the broker or the independent transmission system operator 

(ISO) for evaluation purposes. The following is a sample from the rejected trans­

actions file. 

cat Sell zoo 1 20 9.42 9.49 9.455 (Economics Don't Justify TransCosts) 

cat Sell zoo 1 20 9.45 9.47 9.46 (Economics Don't Justify TransCosts) 

5. As part of the output from the network module, the final line flows after the last 

accepted match for each hour are reported. The following is a sample from this 

data. 

Line Flow Data at the I end of Hour 1 

Flow from bus 0 to bus 1 is -94.6172 

Flow from bus 0 to bus 9 is 156.422 

Flow from bus 1 to bus 0 is 94.6172 

Flow from bus 1 to bus 2 is 187.112 

Flow from bus 2 to bus 1 is -187.112 

Flow from bus 2 to bus 3 is 125.092 

Flow from bus 2 to bus 25 is 39.0101 
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4.2.3 Bid Builder Module 

This module produces the competing participants' bids from production cost databases. 

These production cost databases are obtained from off-line unit commitments performed 

on competing companies' generating unit mixes. If the participants do not have an ac­

curate idea of the competing companies' generating unit characteristics, the production 

cost databases can be obtained from the best estimates that the peirticipants can make 

about the mixes. Since the unit commitment program used in this research is written 

in Matlab, the bid builder module is also implemented as a Matlab program. The in­

puts to this program are Matlab variables obtained from the base case unit commitment 

runs. Both buy and sell bids are obtained by performing repeated economic dispatches 

based on the base case unit commitment. The maximum energy that can be bought and 

sold in a given hour is determined from the minimum and maximum on-line generating 

capacities from the base case, and a fixed spinning reserve percentage input by the user. 

The output is the bid file in the format shown earlier in this section. 

4.2.4 Other Bid Sources 

This module is used when the participant wishes to model some other type of com­

petitor, whose behavior cannot be modeled accurately using the production cost model. 

Examples include power marketers, load aggregators, etc. So long as the other bid 

sources are capable of giving an output in the format shown for bids, the bid matching 

module will be able to accept the inputs. Currently, this feature is not used in the 

simulator, but adding this feature involves minimal work. 

4.2.5 Bid Development Module 

This module uses the bid distribution data, load data, production cost data and 

heuristics, and calculates the suboptimal bids for each block of energy that the pro-
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ductioa cost data file contains. The algorithms for finding the suboptimal bids are 

implemented as C++ programs invoking C functions. The following sections briefly de­

scribe the two kinds of bid development algorithms implemented: polynomial function 

based and incomplete-beta function based. 

4.2.5.1 Polynomial Modeling 

Suboptimal bids are determined as roots of Equations 3.17 and 3.20 for buy and 

sell bids respectively. Polynomial root finding is performed by Laguerre's method. Im­

plementation is by slightly modifying the functions laguer and zroots found in [65], and 

calling these functions from the bid development function repeatedly. Laguerre's method 

does return both real and complex roots for the polynomial, so the complex roots are 

eliminated in the modified version. Furthermore, the suboptimal bid is chosen by cal­

culating the lower bound to expected value of profit for each of the positive real roots, 

and picking the root that yields the maximum lower bound as the solution. Also, sanity 

checks are implemented where the suboptimal buy bids do not exceed the decremental 

cost, and the suboptimal sell bids are greater than or equal to the incremental cost. 

4.2.5.2 Incomplete-beta Modeling 

Suboptimal bids are determined by numerical maximization of the objective function 

given by Equations 3.27 and 3.28. The search range for the normalized suboptimal bid 

price is [0,1], by definition of the beta function^. Before the numerical maximization is 

performed, concavity conditions are tested by verifying that concavity conditions given 

by Equation 3.29 do not result in a range that is outside the allowable range for the 

normalized suboptimal bid price. If this is not the case, then numerical maximization 

will not result in a usable bid price, so the C++ program written for the incomplete-

^ There is a further reduction in the acceptable search range, which results from the sanity checks 
mentioned in the previous section. Thus the se3urch range is [0, for a buy bid and [^, 1] for a sell 
bid. 
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beta model defaults to marginal cost for a bid price, in the case when the concavity-

conditions are not met. If concavity conditions are not violated in the search range, then 

the numerical maximization is performed by using Brent's method for minimization, 

as presented in [65]. Brent's method in one dimension is a combination of parabolic 

interpolation and golden section search. It is a very fast and robust way to search for 

a local minimum in a given range, provided the range brackets such a local minimiiTn 

To use this method, the objective function to be maximized is multiplied by -1 before 

applying Brent's method. The specific C functions used from the book Numerical Recipes 

in C [65] are hrent for minimization, betai, betacf and gammln for calculation of the 

incomplete-beta integral. 

In addition, lower bounds to the probability of acceptance, and/or to the expected 

profit, can be specified manually by the user. If the suboptimal solution does not satisfy 

these lower boimds, then the program defaults the bid price to equal marginal cost. This 

was done to model the fact that participants need not always "trust" the suboptimal 

bidding algorithm to come up with a suitable bid price. 

4.2.6 Profit Calculation Module 

The profit calculation module is a program written in C++. It takes as inputs: the 

match files written by the network module (or the bid matching module if the transmis­

sion network module is not included), and the production cost data. Then it calculates 

the profits made by the participant for each hoxu". The net energy bought or sold by 

the participant, and the corresponding net revenue or expenditure, is first calculated 

by processing the match information. Then the production cost for the corresponding 

net sale/purchase blocks is determined from the production cost data. The difiierence 

between the two is the profit for that hour. The module then calculates the total profits 

for the bidding period by adding the profits from all hours. The output is a profit file. 

A sample of the profit file is shown below. It contains information on net number of 

blocks bought or sold, net expenditure, and net savings. 
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PROFIT INFORMATION 

Hour Blocks Type SavedCost AmtPaid Savings 

1 -10 1 -1843.40 -2092.90 249.500 

2 -8 1 -1476.00 -1505.80 29.8000 

3 -9 1 -1671.40 -1759.30 87.9000 

4 -12 1 -2239.40 -2502.00 262.600 

Total 18930.0 

4,2.7 Regression Analysis 

For polynomial modeling, regression analysis using Matlab provides estimates of 

the parameters of the competing bid distributions using the price data output by the 

network module (or the bid matching module). The data from the prices output files 

are first collated into appropriate categories, such as on-peak or off-peak hour prices 

by using Perl scripts. The user can select which hours are on-peak and which hours 

are off-peak. Then the resulting collated price files are sorted, and input to a Matlab 

function that constructs a cumulative relative frequency (CRF) histogram of the prices. 

This histogram is used as an approximation of the CDF of buy/sell bids. The user can 

select the number of bins in the histogram (which affects the accuracy of the curve fit). 

Then, the Matlab function polyfit is used to find a least-squares poljmomial fit of a user 

specified degree, to the relative frequency histogram. 

For incomplete-beta modeling, non-linear regression is required to fit an incomplete-

beta function to the CRP histogram. Such a function is available in the SPSS package. 

In this package, two options exist to perform the regression. One is the Levenberg-
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Marquardt algorithm and the second is the sequential programming algorithm. For the 

data used in this research, it was found that the sequential programming algorithm 

resulted in a better convergence to the parameter estimates. 

From the above two short descriptions, it can be seen that the regression analysis 

feature of this simulator is primarily obtained from external packages. If the participant 

desires, they could develop ciistom applications to suit their modeling needs. In this 

research however, the focus is on how to use the results from fitting distributions to 

simulator-generated market data, rather than on the fitting itself. So, the regression 

analysis implementation is of a rudimentary nature. 

4.2.8 Heuristics 

The distribution parameters obtained from the previous section use transaction prices 

as proxies to actual bid data, which are confidential. But based on the performance of the 

participant's strategies in initial rounds of bidding, it is possible that the participant has 

obtained some knowledge about the actual bid distribution. This market '^wisdom" has 

been aggregated and is functionally represented by the heuristics module in Figure 4.1. 

The heuristics may serve to modify both the distribution parameters, as weU as the 

bids themselves. The first kind of heuristics affects bids indirectly, and the second kind, 

directly. 
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5 SIMULATION RESULTS AND ANALYSIS 

In tliis chapter, the results of the simulations performed using the brokerage simula­

tor described in the previous chapter for various energy brokerage maxket scenarios are 

presented and analyzed. The simulations and the analyses presented are not proofs that 

the strategies developed here are correct, or that they work under all circumstances. 

In fact, they will not. Further, the scenarios presented are only a small subset of the 

complex possibilities that exist even in a market with as simple a structure as the one as­

sumed in this dissertation. The goal behind the simulations is primarily to examine some 

of the mechanisms by which the strategic bidding theory developed in Chapter 3 can 

be implemented with limited information, modified heuristically to compensate for the 

limited information, gmd tested. We cannot conclusively say that the strategies improve 

bidding performances under most scenarios until extensive simulations are performed for 

different market conditions. However, the simulations performed to date indicate that 

the bidding strategies theoretically developed can be implemented relatively easily, and 

show some promise of improving performances of participants. 

5.1 Simulator Use Overview 

The simulator itself is presented as a tool an individual participant could use to 

test their strategies before using them in actual bidding situations. This testing could 

proceed along the following steps: 
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1. Generate off-line unit commitment and production costing simulations on own 

generating system. 

2. Prepare production cost data for competitors if detailed modeling data is available, 

or use "generic" numbers to generate competitor cost information. 

3. Use the bid-builder module to generate bids for own system, and competitors' 

systems, from the cost data and submit these bids to the bid-matching module. 

4. Perform bid-matching and profit calculation for each participant for the given 

bidding period. This is the "base-case" simulation, where all players bid their 

marginal costs. 

5. Use the transaction price data from the base-case simulation as public information, 

and generate approximations to bid distributions, using the regression module^ 

6. Use the bid distribution parameters to generate suboptimal bids for user's own 

system, by using one of the strategies developed in previous chapters. If need 

be, apply heuristic tuning to these bids (described later in this chapter) to com­

pensate for the errors in approximating bid distributions from transaction price 

distributions. 

7. Submit the suboptimal bids for user's own system to the bid matching module, 

while keeping all other bids the same. 

8. Evaluate profits from this new simulation against the base-case profits, to deter­

mine the effectiveness of the strategy. 

9. Translate any insights obtained into knowledge that can be used in the future. 

10. Repeat the procedure for various scenarios. 

^At present, regression is performed manually, by invoking SPSS or MATLAB. However, a future 
enhamcement of this simulator should include an automated module to perform regression "on-the-fly". 
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In the following sections, the simulations described were performed by using the 

simulator in a manner similar to that just described. 

Thus far in this chapter, we have focused on evaluating the profits made by the 

individual participants. However, the main motivation behind the regulatory changes 

occurring in the power industry seems to be reducing the prices that the rate-payers 

(or the customers) pay the producers. As of yet, it is unclear how the power companies 

propose to share the profits they might stand to make in the bulk power market with 

the end users. Indeed, it is not clear if a net decrease in electric rates would occur at all. 

Therefore, we make the distinction in this research, between improving the performance 

of the individual companies, and reducing electricity rates: the strategies developed and 

tested in this research focus on improving the profits of the individual companies that 

employ them. No effect is presumed or predicted on the price of electricity to the end 

user. 

5.2 Overview of the Test System 

This section briefly describes the test system used to run the simulations. The test 

system used in the simulations consisted of 8 companies, which are all assumed to be 

participants in the brokerage market. The eight systems are assmned to be utility­

like entities, in that they all own generating resources, and have to satisfy a native 

load. This is not a requirement, but was chosen for convenience. Further, it is assumed 

that the generating capacity of each participant is sufficient to satisfy its corresponding 

generating requirements, including a spinning reserve requirement of 15% of the hourly 

forecast load. This is verified for each system by performing a priority list based unit 

commitment^. The companies will be denoted by using numbers, as company 1 through 

company 8. Table 5.1 shows the company summary information, including number 

-The unit commitment program used is based on a priority list based progremi developed by Sridhar 
Kondragunta and enhanced by this author. It is implemented in Matlab. 
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of units, peak load, sum of maximum and minimum capacities assuming all units are 

online^. 

The relevance of the native load requirement is justified in the current transitional 

environment where traditional utilities are preparing for competitive markets, while still 

having to satisfy native load commitments. In the future, less regulated environments, 

the native load requirements will be replaced by firm generation contracts that are al­

ready in existence at the time the bidding decision is being made. Thus, the strategies 

developed in this research with the assiimption of an underlying "base-case" unit com­

mitment are still expected to be relevant and applicable. 

Table 5.1 Test system data - company summary information. 

Company Units Peak Load (MW) YlPmin (MW) EPmax (MW) 
1 16 2,050 770 2,940 
2 4 150 62 224 
3 14 1,775 1.018 2.523 
4 4 175 85 247 
5 22 5,025 3,150 7.182 
6 4 225 93 310 
7 4 100 50 134 
8 16 1,975 948 2,804 

Totals 84 11,475 6,176 16,364 

All participants are assumed to be bidding to buy and sell simultaneously in the 

brokerage market. This assumption is made so that no preconceived notions exist about 

the nature of the participants. 

In the first part of this chapter, the scenarios presented are simulations of the ef­

fects of strategies on the bidding performances of the participants, without modeling 

transmission. In the latter part, transmission is also included to a limited extent in the 

modeling. For these scenarios, the transmission system underlying the brokerage market 

is assimied to be the IEEE 30 bus reliability test system (lEEE-RTS), which has been 

^The assumption of all units being online is made only for presenting the data in the table, and not 
for the simulations. 
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slightly modified. The modifications are: 

• The slack bus has been renumbered to be bus 0, instead of bus 30. 

• The generators in the slack bus and bus 20 have been dropped. The slack bus 

generator has been dropped because the model used to calculate line flows is a 

DC power flow model, and so losses are not considered. The generator on bus 20 

has been dropped so that the total number of generators can be limited to 8, the 

number of participants in the system. Bus 20 was chosen because bus 19, in close 

proximity, is the designated bus of one of the companies. The resultant modified 

lEEE-RTS system is shown in Figure 5.1. 

• Only Y-bus data is used from the lEEE-RTS test system. All the generators shown 

in Figure 5.1 represent the entire generating system of each participant. 

The modifications were made for simplifying the transmission modeling, and for 

keeping the number of generating buses in the system to be equal to the number of 

participants. 

Further, for pricing purposes, all lines are assumed to have a length of 50 miles, and a 

MW-mile tariff of 0.01 $/MW-mile. These numbers were assumed because no economic 

data was available for the lEEE-RTS system. The magnitudes of the numbers used 

were chosen based upon trial and error simulations, such that the transmission price 

component of the transactions were approximately in the 4 range. This was 

within the range of currently posted transmission usage tariffs'^. 

5.3 Initial Calculations and Simulations 

In order to develop bid distributions from past bidding history, and to use these 

distributions to develop bids for the market, we needed some starting point for the 

"Tor example, Pemisylvania Power & Light tariffs range from 0.05 to 0.2 S/KW per day for reserving 
capacity, which translates to approximately 2 to 8 $/MWH. 
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strategies to use. Also, to consistently compare the performance of a particular strategy-

for diflferent participants, we needed a benchmark. In the following sections, such a 

"base case" was obtained by assuming that all the participants of the market operate 

under perfect competition assumptions. Thus, the bids submitted to the broker by the 

participants is simply their marginal cost/value of energy. This cost is obtained by using 

the Matlab-based bid-builder module, outlined in Section 4.2.3. This module uses a one-

week unit commitment as a basis for generating block-incremental and block-decremental 

production costs for each hour. 

Another possible approach for obtaining a benchmark is to perform a combined unit 

commitment of all the companies' units, serving the combined loads of the all companies. 

This would have resulted in the traditional pool-dispatch of the units, and provided a 

benchmark that considers the case that maximizes system savings, and reduces the 

system costs. However, we opted for the competition assumption, with individual unit 

commitments, for this research. 

The number of blocks bid for in each hour was determined by the minimum and 

maximum online capacity for that hour as scheduled by the unit commitment run, the 

native load for that hour, and the reserve requirements. The block-incremental/block-

decremental costs were obtained by running economic dispatches with and without the 

block being sold/bought, and using the difference in costs to cost the block. The resulting 

bids were used as a base-case bidding strategy for each participant. 

The base-case bids developed by the above module were processed by the bid-

matching software described in Section 4.2.1. The resulting transaction prices for each 

hour were considered to be the publicly available information to the participants. Based 

on this information, the participants were assumed to develop suboptimal bidding strate­

gies, using the results developed in this dissertation thus far. These bids were then 

submitted to the bid-matching module to evaluate the effectiveness of the particular 

strategy. 
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Table 5.2 shows the resultant profits of each of the companies from bidding according 

to various strategies, for a period of 168 hours. In the second column, labeled "INIT". the 

results shown are the profits from bidding marginal costs, in other words, this column 

represents the base case described in Section 5.3. In submitting the bids to the bid-

matching module, it was assumed that all the participants were bidding simultaneously 

to sell and buy energy. 

Table 5.2 Polynomial model - all-participant profits in $. 

Scenario 
Co. INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 

1 19,649 20.233 19,229 18,686 19,394 19.609 18,943 18,943 19,299 
2 19,212 19,244 21,505 19,213 19,243 19,212 19.321 19,253 19.212 
3 13,714 13,489 13,646 12,435 13.729 13,721 13,517 13,691 16,159 
4 8,118 8,118 8,135 8,118 9,166 8.117 8,113 8,118 8,119 
5 83,407 82,889 81,391 79,032 81.759 83,419 79,909 82,484 77,504 
6 36.440 36,441 36.609 36,441 36,441 36.441 40,906 36,506 36,441 
7 11,784 11.784 11,795 11,784 11,784 11,784 11,826 13,033 11,784 
8 17,644 17,468 17,524 17,524 17,596 17,648 17,428 17,583 16,916 

Tot. 209,969 209,730 209,835 205,966 209,112 209,953 209,967 209,969 204,577 

An examination of the match information after the fact, however, showed that com­

panies 2 and 5 were predominantly selected by the module to be sellers, while the other 

companies were primarily buyers, in most of the hours. 

5.4 Polynomial Model 

In this section, simulations from using the polynomial modeUng results developed in 

Section 3.4 are presented. Using the transaction prices data generated from the base-

case simulations above, a cumulative relative frequency (CRF) curve of the prices was 

obtained. The prices were divided into on-peak and oflf-peak prices, using Perl scripts to 

collate the data into appropriate hours. In these simulations, hours 8 through 22 were 

assumed to be on-peak for each day, with the other hours being classified as off-peak. 
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This was done follow-ing current power industrj- convention^. Then, a MATLAB script 

was used to curve-fit a 20th degree polynomial to the on-peak and oflf-peak CRF curves. 

Thus, two different polynomials were used to model on-peak and off-peak periods. These 

polynomials are approximations to the CDF of transaction prices occurring in the mar­

ket. In the absence of any information on the actual bids that resulted in these prices, 

this research attempts to use the CDF as proxies for the bid distributions themselves. 

The resulting bids then can be subjected to heuristics, which are attempts to guess more 

closely, the actual bid distributions. 

As an initial step, bids were developed that do not involve any heuristics. In other 

words, the coefficients of the polynomial obtained are directly assumed to be the coef­

ficients of Equation 3.14. Following this. Equation 3.17 was solved for each bid block, 

using the associated generating cost determined by the bid-builder module, and the 

coefficients of the polynomial. Thus, for each block that the participant bids, a suboi>-

timal solution was obtained from the results developed in Section 3.4. The calculations 

were performed by a C-f-+ program on a HP CllO workstation, and the approximate 

execution time for the largest company, company 5, was 192 CPU seconds. This exe­

cution time was for suboptimal bid calculations for the 168 hour period, and involved 

the pricing of 18,429 blocks. The execution time for the other, smaller companies was 

substantially lower. Thus, the required calculations can be performed very efficiently in 

a relatively short period of time. 

Columns 3 through 11 in Table 5.2, labeled "1-SUB", "2-SUB", etc., represent profits 

from bidding scenarios where each company was in turn assumed to use the suboptimal 

strategy, while the other companies were assimied to submit the same bids as in the base 

case, i.e., the marginal cost based bids. Thus, the column labeled "1-SUB" represents 

the case where only company 1 was assumed to be bidding suboptimally. To evaluate 

®Some utilities use hours 7 through 22 as on-peak, while others use "shoulder" hours between on-
and off-peak hours. 
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the effectiveness of the strategy", we compare the profits in row 1 of this column to the 

corresponding profits in row 1 of the column labeled "INIT". From this comparison, we 

can see that there is an increase in the profits of company 1 when compared to the base 

case. The other numbers in the column labeled "1-SUB" represent the profits of the other 

companies for this scenario. Table 5.3 summarizes the results from these simulations. In 

this table, the column labeled "INIT" is identical to the column in Table 5.2 of the same 

label. The third column, labeled "SUBOPT" contains the profits from the scenarios 

when the company corresponding to the row label, uses the suboptimal strateg}-. In 

other words, this column shows the diagonal elements of the section of Table 5.2, from 

columns 3 through 11. 

Table 5.3 Polynomial model -
suboptimal bidding 
profits in $. 

Scenario 
Company INIT SUBOPT 

1 19,649 20,233 
2 19.212 21.505 
3 13,714 12,435 
4 8,118 9,166 
5 83,407 83,419 
6 36,440 40,906 
7 11,784 13,033 
8 17,644 16,916 

Comparing the numbers in each row of this column with the corresponding row of 

column 2 of the same table, we can see the effect of the strategy on the bidding profits of 

the company. It can be seen that with the exception of companies 4 and 8, the strategy 

resulted in an increase in bidding profits for all the other companies. 

Upon examination of the bids, it was observed that all the suboptimal sell bids 

were greater than or equal to the base-case bids, and all the suboptimal buy bids were 

less than or equal to the base case. This implies that the suboptimal bid development 
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algorithm works correctly, by determining a mark-up/mark-down on the marginal cost 

for the selling/buying decisions. Also, upon examination of the matches, it was observed 

that for all the companies, the number of bids matched was lower than in the base case. 

This is also not surprising, since the bid-matching module only matches a pair of buy 

and sell bids if a positive savings results. Adding mark-ups/mark-downs would move 

the supply and demand curves closer to each other, thus resulting in lower volume. 

The structure of the market is such that, if this mark-up/mark-down is too high/low, 

then the bid stands the risk of being rejected in favor of competing bids. Now, the com­

peting bids are represented by an approximation to their probability- distribution, and 

so the negative effects of the strategy can be explained by the fact that the distributions 

do not represent the competing bids well for that particular participant. The fact that 

the same strategy, using the same distribution, resulted in an increase in profits for 6 of 

the 8 companies can be explained by one of the following two reasonings: 

• Errors in the assimied distribution of competing bids were such that the resulting 

suboptimal bids were shifted in the direction that increased probability of accep­

tance, so that, while bidding profits were reduced, bid acceptances were not. 

• Errors in the assimaed distribution did result in increased bid rejections in favor 

of competing bids, but the production cost structure of the participant was such 

that, in spite of this effect, there was a net increase in profits. 

Because of the large amount of data generated by the simulator, it is hard to un­

derstand clearly which effect predominates for each participant. However, the results 

indicate that the suboptimal strategy does result in some improvements of profits even 

for the rather simplistic modeling used here. It would be of interest to see the effect of 

detailed past-history modeling, perhaps using a distribution for each hour in the sim­

ulation period of 168 hours, on the effectiveness of the strategy. But such a study is 

beyond the scope of the time and resources available to this author. 
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However, the following attempt was made to implement a heuristic modification 

of the suboptimal bid. The main reasoning behind this heuristic is that, since the 

suboptimal bids resulted in mixed results, both an increase and a decrease in profits, 

there may be some merit in averaging the bid prices obtained from suboptimal bidding 

and the base-case bids. Such a heuristic can be seen as the action of a participant who 

wishes to lessen the negative effects of the errors in bid distribution. This action was 

performed, and once again 168 hours of bidding was performed for scenarios where each 

of the companies, in turn, subnoitted the average values to the bid-matching module. 

Table 5.4 shows the results from these simulations. The data is shown in a format similar 

to that of Table 5.2, with the columns labeled "1-SUB", "2-SUB", etc., now representing 

results from bidding the average of the suboptimal and base-case values. The diagoneil 

elements of the new columns are summarized in column 3 of Table 5.5. Comparing 

this column with column 2 of the same table, it can be seen that the strategic bidding 

results uniformly in an increase in profits for all the companies, when compared to the 

base case. 

Table 5.4 Modified polynomial model - all-participant profits in $. 

Scenario 
Co. INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 

1 19.649 19,931 19,417 19,011 19,493 19,608 19,273 19,451 18,683 
2 19,212 19,227 20,320 19,212 19,221 19,212 19,263 19,227 19,212 
3 13,714 13,618 13,689 14,103 13,749 13,726 13,618 13,708 15,247 
4 8,118 8,152 8,127 8,118 8,465 8,117 8,117 8,118 8,119 
5 83,407 83,123 82,380 80,703 82,426 83,423 81,674 82,964 79,794 
6 36,440 36,440 36,521 36,440 36,441 36,441 38,690 36,454 36,440 
7 11,784 11,784 11,785 11,784 11,784 11,784 11,792 12,433 11,784 
8 17,644 17,547 17,593 19,190 17,631 17,643 17,537 17,611 18,667 

Tot. 209,969 209,825 209,835 208,565 209,212 209,958 209,967 209,969 207,949 

Whether the above heuristic is the best one for each company can only be determined 

by performing extensive simulations of different scenarios for each company. But the 

analysis presented here is to show that heuristic tuning of suboptimal bids is possible for 

polynomial modeling. The heuristic suggested here is that of averaging the suboptimal 
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bid with the marginal cost. This action can be interpreted as the actions of a company 

that is aware of the limitations of the information used by the strategy, and attempts 

to compensate by making the bid "more conservative" by averaging it with the most 

conservative bid (from the point of view of acceptance probabilities) - the marginal 

cost. This action could be further refined by using a weighted average of the two bids, 

instead of a simple average. The actual weights could be tested by trial and error, and 

simulation. Again, such a task is very time consuming and has not been pursued in this 

research. Future research in this direction could prove interesting. 

Polynomial modeling thus seems to be a promising way to include market information 

into the bidding process. It is a relatively fast, and conceptually simple way to model 

competitors, and the preliminary simulations shown in this section indicate that when 

heuristically tuned, the bids determined in this way can improve upon the marginal cost 

bidding benchmark. 

Table 5.5 Modified Polynomial 
model - suboptimai 
bidding profits in $. 

Company 
Scenario 

Company INIT MODSUB 
1 19,649 19.931 
2 19,212 20.320 
3 13,714 14.103 
4 8,118 8,465 
5 83.407 83,423 
6 36,440 38,690 
7 11.784 12,433 
8 17,644 18,667 

Even though it has its has advantages, some disadvantages were discovered in poly­

nomial modeling. These are summarized as follows: 

• A relatively high degree (20) polynomial was required before a reasonable fit to 

the CRF curve could be obtained. This results in multiple values for suboptimai 
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bids, which must be evaluated. 

• Because of the fact that a polynomial fit does not always satisfy the property of 

the CDF that requires it to be between 0 and 1, erratic solutions sometimes result. 

This is especially true when probabihty of acceptance is close to zero (sell bid price 

is high or buy bid price is low). Thus, sanitj" checks may have to be implemented 

to ensure that the bid prices resulting from the model make physical sense. 

• Since the polynomial model does not have a standard shape associated with it. 

heuristics are hard to develop that could take advantage of other market infor­

mation, such as high and low bids, most likely bid, etc., should such information 

become available to the participant. 

The above disadvantages do not exist, at least theoretically, for incomplete-beta 

modeling. The next section outlines the implementation and testing of that model. 

5.5 Incomplete-Beta Model 

Using the CRF curves generated from the base-case transaction prices, incomplete-

beta function curve fits were obtained. As in the previous section, the prices were again 

divided into on-peak and off-peak prices. The curve fit was achieved by using SPSS 

version 6.1.1, on a DEC Alpha workstation. The nonlinear regression required for the 

curve fit was achieved by using the sequential programming option in the package. This 

option was found to have better convergence properties than the Levenberg-Marquardt 

algorithm option. Based on this curve fit, two sets of coefficients were obtained, one 

each for on-peak and off-peak price distributions. These values were substituted into 

Equations 3.27 and 3.28 which are the objective functions of the buyer and the seller 

respectively. The value for m, the maximum likely bid were assumed to be the value of 

the maximum of the transaction prices occurring in the on-peak or off-peak periods. The 
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resulting expression was numerically maximized® by searching between 0 and 1 for the 

normalized suboptimal bid, that maximizes the objective function. The numerical max­

imization, and the required integration of the incomplete-beta function were performed 

by invoking C functions available in [65]. The maximization algorithm was a modified 

minimization algorithm known as Brent's method. Generating suboptimal bids for the 

largest company, company 5, took only 15 CPU seconds on the HP CllO workstations. 

Thus, the suboptimal bid development implementation using incomplete-beta model is 

very eflBcient, compared to the polynomial model. 

The resulting bids were assumed to be submitted by each company, in turn, to the 

bid-matching module. The profits from the simulations of various scenarios, similar to 

those described in the pre\'ious section, are shown in Table 5.6. 

Table 5.6 Incomplete-beta weekly model - all-participant profits in $. 

Co* 
Scenario 

Co* INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 
1 19,649 1.306 18.060 18,303 18,859 43.906 16,595 18,073 18.439 
2 19,212 19,017 27,393 19,166 19,252 16.392 19,647 19.371 19.141 
3 13,714 12,482 13,330 4,503 14,054 6,748 12.789 13.397 17,801 
4 8.118 8,056 8,373 8,042 9,786 5,480 8,652 8,240 8,020 
3 83,407 94,524 73,954 77,630 79,491 41,130 65,053 77.737 75,413 
6 36,440 36,087 36,854 36,329 36,440 31,453 53,597 36.784 36,313 
7 11,784 11,648 11,816 11,777 11,784 10,778 11,838 17,620 11,752 
8 17,644 16,020 17,100 21,784 17,975 7,609 16,642 17,263 7,085 

Tot. 209,969 199,143 206,884 197,537 207,644 163,500 204,816 208,488 193,966 

The sxmimary of the data in this table is shown in Table 5.7, in column 3, labeled 

"WEEKLY". Column 1 of this table shows the profits from the base case simulation 

described in the previous section. By the comparing the corresponding elements of the 

two columns in each row, we can see the effect of the strategy on the bidding profits 

of the participants. Unlike the polynomial modeling case, incomplete-beta modeling by 

assuming weekly classification of price periods results in negative effects on the profits 

®Before maximization was performed, the concavity conditions presented in Section .A..2.2 were 
checked 
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of companies 1, 3, 5 and 8. The profits of the other companies shows an increase over 

the base case. 

Further, it can be seen from columns 3 and 7 of Table 5.6, that when one of the 

predominantly selling companies 1 and 5 employ the suboptimal strategj-, the other 

company has an increase in profits. Upon examination of the matches (not shown), it 

was found that this was because the incomplete-beta model parameters imder-estimated 

the bids of the competing company, and thus resulted in a large number of bids being 

rejected by the bid-matching module for the company employing the strategy. This 

resulted in the other company virtually cornering the mcirket for energy, leading to 

the observed profit distributions. These results suggested that perhaps the suboptimal 

bidding model was not detailed enough in terms of modeling different distributions of 

competing bids for different periods. 

Table 5.7 Incomplete-beta weekly 
model - suboptimal 
bidding profits in S. 

Company 
Scenario 

Company INIT WEEKLY 
1 19,649 1,306 
2 19,212 27,393 
3 13,714 4.503 
4 8,118 9.786 
5 83,407 41,130 
6 36,440 53,597 
7 11,784 17,620 
8 17,644 7,085 

Based on the results observed, the next step was to incorporate a more-detailed bid 

distribution model. The base-case transaction prices were now divided into 7 different 

days of the week, which were further sub-divided into on-peak and off-peak prices, and 

CRFs were constructed. These CRFs were then curve-fitted with incomplete-beta func­

tions, using SPSS. Thus, we now modeled 14 different sets of incomplete-beta function 
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parameters in the 168 hour simulations. The profits from the simulations are sho\\Ti in 

Table 5.8, and are summarized in column 3 of Table 5.9, labeled "DAILY". It can be 

observed from the latter table, that the negative effects on profits persist for companies 

1, 3, 5, and 8, although the magnitude of this effect is less compared to the weekly model 

(column 3, labeled "WEEKLY"). Also, the increase in profits for the other companies 

is more than in the case of weekly modeling. 

Table 5.8 Incomplete-beta daily model - all-participant profits in S. 

Co. 
Scenario 

Co. INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 
1 19,649 3,833 18,160 18,153 18,983 43,803 16,804 18,122 18,234 
2 19,212 19,017 29,148 19,147 19,252 16,551 19,627 19.365 19.122 
3 13,714 12,594 13,388 8.068 13,977 9,000 12,996 13,445 17,602 
4 8,118 8,059 8,352 7,997 10,382 5,625 8,577 8,232 7.987 
5 83,407 94,430 74,099 78,085 79.757 42,429 65,185 77,747 76,097 
6 36,440 36,085 36,854 36,291 36,440 31,683 56,474 36,784 36,282 
7 11,784 11,647 11,816 11,777 11,784 10,848 11,838 18,375 11.741 
8 17,644 16,121 17,090 21,833 17,854 9,576 16,728 17,321 12,121 

Tot. 209,969 201,790 208,909 201,356 208,433 169,519 208,233 209,394 199,189 

Table 5.9 Incomplete-beta daily models - subop­
timal bidding profits in $. 

Co. 
Scenario 

Co. INIT DAILY AVERAGE SPREAD 
1 19,649 3,833 9,899 20,310 
2 19,212 29,148 24,782 24,472 
3 13,714 8,068 13,483 12,915 
4 8,118 10,382 10,274 9,816 
5 83,407 42,429 80,097 84,418 
6 36,440 56,474 47,778 47,310 
7 11,784 18,375 15,371 15.428 
8 17,644 12,121 18,180 17,421 

This suggests that a more detailed model for competing bid distributions could im­

prove the effectiveness of the suboptimal strategy. It would be possible to explore this 

procedure further by incorporating an even more detailed model, for example, several 

more than just two price periods per day. However, collating prices, and obtaining 
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incomplete-beta function fits to CRFs is currently implemented manually, cmd is a some­

what laborious process even for the less detailed models presented so far. So, we did not 

attempt to study very detailed price period models. 

In spite of the apparent improvement in the effectiveness of the strategy, we can still 

implement heuristics to further fine tune the suboptimai bids. The first kind of heuristic 

attempted was identical to the one presented for the polynomial model, i.e., averaging 

the suboptimai bids with the base-case bids. Results from using these average bids in 

simulations are shown in Table 5.10. 

Table 5.10 Incomplete-beta average model - all-participant profits in S. 

Scenario 
Co. INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 

1 19.649 9,899 18.820 18,670 19,331 33,742 17,961 18,764 18,465 
2 19,212 19,042 24,782 19,169 19,244 17,544 19,450 19,315 19,158 
3 13,714 12,523 13,536 13,483 13,666 9,138 13,328 13,621 16,539 
4 8,118 8,045 8,167 8,050 10,274 6,660 8,145 8,116 8,040 
5 83,407 92,906 78,651 79,968 81,537 80,097 74,267 80,552 78,726 
6 36,440 36,126 36,759 36,347 36,440 33,405 47,778 36.681 36,349 
7 11,784 11,657 11,815 11,777 11,783 11,183 11,838 15,371 11,760 
8 17,644 16,103 17,347 20,492 17,535 10,004 17,172 17,510 18,180 

Tot. 209,969 206,304 209,880 207,959 209,813 201,777 209,944 209,934 207,221 

Here, each company is assumed to (in turn) bid the average of the bids obtained by 

the suboptimai bidding strategy using daily incomplete-beta function models, and the 

base case, marginal cost bids. The data shown is in the usual format, and is summarized 

in column 4 of Table 5.9. 

By comparing this column with columns 2 and 3 of the earlier Table 5.7, and coliman 

3 of Table 5.9, it can be observed that while the negative effects still persist for company 

1, 3, and 5, the magnitude of this effect is markedly reduced. Company 8 now shows 

an increase in profits. The other companies continue to show an increase in profits. 

Thus, the heuristic does decrease the negative effects of the strategy. This averaging 

can once again be interpreted as the action of a participant who wishes to submit a 

more conservative bid. In fact, this interpretation is supported by the decrease in the 
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magnitude of the increase of profits of companies 2, 4, 6 and 7, when compeired to their 

performances without employing the heuristic. In other words, these companies now 

submitted needlessly conservative bids, and lost some the benefits from the suboptimal 

strategy. Achieving the right balance of conservatism and strategy thus is a key to 

designing the best strategy for a company. Such a balance could be possibly discovered 

by performing extensive simulations for a variety of scenarios. 

The above heuristic, while attractive in its simplicity, fails to incorporate one other 

advantage of incomplete-beta modeling. This advantage is the fact that the relatively 

small number of parameters of the model (3), suggest a direct way of compensating for 

the errors introduced by using transaction prices as a proxy for the buy and the sell 

bids of competitors. To investigate this advantage further, we need to investigate the 

sensitivity of the suboptimal bid to changes in the parameter values. Unfortunately, no 

closed form solution exists for the maximum of the objective function given by Equa­

tions 3.27 and 3.28. Therefore, mathematical sensitivities to parameters are hard to 

derive. However, numerical calculations can be performed to examine the behavior of 

the suboptimal solution as a function of the three parameters of the incomplete-beta 

model. These parameters are the shape parameters, a and 6, of the incomplete-beta 

function, and the estimated maximum likely bid, m which is used to normalize the 

search space for the suboptimal bid. Figures 5.2, 5.3, and 5.4 show the variation of the 

suboptimal bid with m, a, and b respectively. 

From these figures, it can be seen that the suboptimal bids for both a buyer and a 

seller increase with an increase in m and a, while the bids decrease with an increase in 

h. Now, the participant can use these properties to directly adjust the suboptimgJ bids, 

instead of taking averages with the base-case bids. Using the sensitivity of the bid to 

the parameters a and h will involve changing the curve fit obtained by regression, and 

is a more complex operation to interpret physically. This was not attempted in this 

research. 
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Figure 5.4 Sensitivity of suboptimal solution to b. 

The peirameter m, however, is a normalizing factor, and can be interpreted as the 

participant's estimate of the largest bid that could occur in the competing bid distri­

bution. Now, we assume that the participant uses transaction prices to obtain a and 

b through regression. Then, instead of using the largest occurring transaction price to 

directly represent m, as in the previous cases, the participant changes m as follows: 

the values for m for the buy bid distributions are all increased by 4 S/MWH, and the 

values for m for the sell bid distributions are decreased by 5 S/MWH. In other words, 

the participants would like to impose the heuristic tuning that there is a 9 $/MWH 

spread between the highest possible buy bid and the highest possible sell bid (since m 

is the normalizing factor for the sell bid case also, we still interpret it as the highest 

possible sell bid, and not the lowest possible sell bid). The particular numbers were 

chosen by (unfairly) looking at bid data and selecting the adjustment to be close to the 

actual bid distributions. However, it is reasonable to expect that a participant with 

some experience with the market, or some form of market intelligence, would have an 
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opinion of the magnitude of this spread, and could include this opinion into the heuristic 

tuning by adjusting m as above. The effect of this adjustment would be to increase the 

suboptimal buy bids and to decrease the suboptimal sell bids. In other words, the par­

ticipant's strategy now is modified to recognize a "stronger" competition than reflected 

by transaction prices alone. 

Such modifications in the vjdues of the parameter m were made, and the suboptimal 

bids were generated for each company. The resulting sell/buy bids displayed the expected 

decrease/increase. These bids were submitted to the bid-matching module, in turn, and 

the results from the bidding are shown in Table 5.11. These results cire summarized in 

column 6 of the earlier Table 5.7. Upon comparison of the values in this column with the 

corresponding values in column 1, it can be seen that the strategy results in an increase 

in profits over the base case for all the companies except company 3 and company 8. 

This shows that it is possible to directly modify the bids generated by the suboptimal 

strategy by adjustments the parameters of the bid distribution heuristically. The fact 

that the strategy still resulted in a decrease of profits for company 3 and company 8 can 

be explained by the reasoning that the adjustments were not suflBcient in those cases to 

mitigate the effect of rejected bids. 

Table 5.11 Incomplete-beta spread model - all-participant profits in $. 

Scenario 
Co. INTT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 

1 19,649 20,310 18,845 18,836 19,335 19,665 18,033 18,701 18,505 
2 19,212 19,252 24,472 19,212 19,249 19,118 19,471 19,325 19,212 
3 13,714 13,309 13,505 12,915 13,680 13,483 13,272 13,603 15,860 
4 8,118 8,220 8,161 8,117 9,816 8,076 8,173 8.115 8,119 
5 83,407 82,899 78,952 79,694 81,624 84,418 74,673 80,518 78,255 
6 36,440 36,435 36,775 36,440 36,441 36,225 47,310 36,713 36,440 
7 11,784 11,783 11,816 11,784 11,784 11,756 11,838 15,428 11,784 
8 17,644 17,334 17,295 19,828 17,567 17,202 17,110 17,497 17,421 

Tot. 209,969 209,543 209,824 206,829 209,498 209,947 209,884 209,902 205,598 
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5.6 Variations on Competitor Strategies 

In the previous sections, each competing company was assumed to bid its marginal 

cost, while the company selected to be Company I in the simulation was assumed to bid 

strategically. This assimaption was made to see clearly the effectiveness of the strategy 

on a particular participant's performance, given that the bidding of the competitors 

remains essentially unchanged. This approach can be justified as a "first approximation" 

solution, in the absence of any knowledge of competitor behaviors. Thus, such a strategv* 

can be tested by simulation even in the absence of any other information except a set 

of recent transaction prices that are expected to repeat^. However, if approximate 

production cost data is available for competitors, it is conceivable that some companies 

would model their competitors' bids in a more complex manner than assumed in the 

previous sections. For example, company 1 might wish to model the key competitor for 

selling, company 5, as a player who also employed the suboptimal bidding strategy that 

company 1 itself uses. Alternatively, buying companies may model selling company bids 

by incorporating a suboptimal strategy, while testing their own bidding strategies for 

buying. 

An exhaustive analysis of all possible combinations is too time consuming to be 

performed within the scope of this research. However, a set of "extreme case" simulations 

were performed. In these simulations, each company was assumed to use the data from 

the base-case simulation to generate suboptimal bids by using each of the strategies 

illustrated above by simulations. These bids were simultaneously used to test the relative 

effectiveness of these strategies, the results are shown in Table 5.12. 

The arrangement of results in this table is similar to the earlier tables showing all the 

participant' profits. The second column, labeled "INIT" shows the profits from the base 

^If such a set is unavailable, participants could use a forecast of transaction prices. Although this 
seems like uncertain information on which to base bidding, traditionally, utilities have based unit 
commitment models on forecasted loads. Therefore, the problem of imcertainty in supply eind demsuid 
conditions is not new. 
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case simulation. The subsequent columns labeled "POL" and "POL-AV, stand for the 

cases where all participants submit, respectively, suboptimal bids from the polynomial 

model, and the polynomial model with averaging heuristics employed. Columns 5, 6, 

7 and 8 show the results when all participants submit suboptimal bids generated by 

employing, respectively, the incomplete-beta strategy with the weekly model, the daily 

model, the daily model with averaging heuristics, and the daily model with the assumed 

spread in the parameter m. These are labeled "BET-WKL", "BET-DLY", "BET-AV~% 

and "BET-SPR", respectively. 

Table 5.12 Simultaneous strategy simulations - all-participant profits in $. 

Co. 
Scenario 

Co. INIT POL POL-AV BET-WKL BET-DLY BET-AV BET-SPR 
1 19,649 16,059 17,480 4,016 7,478 14.980 14,704 
2 19,212 21,720 20,421 21,180 24,888 22,833 24,944 
3 13,714 16,284 15,977 34 697 7.547 14,982 
4 8,118 9,337 8,526 1,246 4,583 8,437 10,264 
5 83,407 62,965 71,966 30,062 34,110 66,409 55,391 
6 36,440 41,060 38,750 42,333 49,413 43,840 47,577 
7 11,784 13,140 12,462 16,553 17,420 14,634 15,857 
8 17,644 20,730 20,508 282 635 8,578 19,076 

Tot. 209,969 201,300 206,092 115,711 139,227 187,262 202,798 

It can be seen from this table that the effects of the strategies on individual, as 

well as total profits in the system is far more complex than in the case when only one 

participant is assumed to be using the strategy. 

In the case of the polynomial strategies, using the polynomial strategy increases the 

profits of all the predominantly buying participants, companies 2,3,4,6,7 and 8, when 

compared to the base case profits of column 1. Companies 2 and 5, the primary sellers 

in the system, lose profits, when compared to the base case. For the polynomial strategy 

with heuristic tuning, the general pattern of improving individual profits upon heuristic 

tuning is not observed. Compared to the base case, profits for the buyers, companies 

2, 3, 4, 6, 7 and 8 are still higher. Profits for the sellers, companies 1 and 5 are lower 

than the base case, but are not as low as without heuristic tuning. Also, total system 
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profits for the strategic bidding cases are not as high as in the base case. This is 

understandable, since the base case is the case where all players bid marginal costs, and 

such a solution is the optimal solution from the point of view of total system savings. 

However, as we improve the bidding strategies heuristically, we find that the totai system 

profits do increase. This can be interpreted as the market participants learning to guess 

competitor's behavior better, and thus the total system profits move towards the base 

case of perfect competition. 

Comparing the incomplete-beta models with the base case, we find a similar situation, 

with the buyers, in general, improving their performances with strategic bidding, at the 

expense of the sellers. Again, as we improve the detail of the modeling, firom weekly 

model, to daily model, to daily model with averaging and finally to daily model with a 

spread assumed, we find that total system profits improve towards the base case. 

While it is interesting to observe that the simultaneous strategies trend towards the 

perfectly competitive base case, the goal of the strategies, £Lnd the function of the simu­

lator is not to achieve competitive equilibrium. Instead, it is to test the effectiveness of 

each strategy in enhancing the performance of an individual participemt, under various 

conditions. This can be seen by comparing the columns labeled "POL-AV" and "BET-

SPR", the most "sophisticated" strategies studied in this section, with the base-case 

column, labeled "INIT". Clearly, although the total system profits approach the com­

petitive levels in all three cases, the distribution of profits among the market participants 

is different in each case. Thus, the effectiveness of the strategy has been different for each 

player. Also, in performing these simulations, it has been assumed that each participant 

uses the same bid distributions, with the same heuristic tuning, to calculate the subop-

timal bids. This might not occur in real life situations. Therefore, the simulations and 

analyses presented in this section are not an exhaustive or even realistic representation 

of real-life scenarios. Rather, they are simplified versions, that could be improved upon 

by participants, if they so desire, by including detailed models for competitors, and by 
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performing a nmnber of simulations. 

5.7 Effects of the Transmission Network Module 

In this section, the results of simulations are presented, which included transmission 

network modeling to a limited extent, as outlined in Section 4.2.2. The companies 

modeled in this section so far were now assumed to be sited at the various generating 

buses, as shown in the earlier Figure 5.1. Four sets of simulations were performed, under 

two different line loading assumptions. 

5.7.1 Light Line Loading Conditions 

Under the first assumption, the maximum allowable flow on each line in the system 

- was assumed to be 200 MW. This assumption implies a relatively lightly loaded trans­

mission system. In other words, if a flow of more than 200 MW occurred in any of the 

lines as a result of a match, this match would be rejected. For this assumption, two sets 

of simulations were performed. One simulation was a repeat of the base-case simulation 

of the previous sections, with participants bidding marginal costs. The other set of sim­

ulations involved the participants (in turn) submitting the suboptimal bids developed 

by assuming a modified parameter m for the incomplete-beta modeling, which was dis­

cussed in the last part of the previous section. The results are shown in Table 5.13, and 

are arranged in the usual fashion. 

It can be seen from column 1 of this table that the base-case profits of all the com­

panies were less than the base-case profits when transmission was not considered. The 

results are summarized in Table 5.14. In this table, profits from bidding the base case 

and from bidding the strategic bids, are shown in columns 2 and 3, labeled "INIT-

LGT" and "SPR-LGT" respectively. A comparison of the two columns shows the effect 

of employing the suboptimal bidding strategy with heuristic tuning of the distribution 
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Table 5.13 Light line loading - all-participant profits in S. 

Scenario 
Co. INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 

1 7.798 8,083 68,32 7,800 7,840 7.908 6.081 6,922 7,808 
2 12.462 12.460 18.432 12.462 12,469 12,395 11,309 11,944 12,462 
3 1.137 829 917 1,104 1,101 1,137 977 1,093 1,140 
4 167 180 181 167 44 160 36 166 167 
5 21.446 20,879 16,830 21.460 21.445 21,656 14,703 18,427 21.482 
6 10.876 10.820 10.279 10.848 10,876 10.629 15,219 11.594 10.875 
7 5.847 5.883 5.731 5.875 5,847 5,827 5,995 9,226 5,847 
8 2,356 2,213 2,261 2,350 2,270 2,356 1,077 2,139 2,356 

Tot. 62,091 61,352 61,466 62,069 61,895 62,071 55,400 61,514 62,141 

Table 5.14 Transmission modeling - suboptimal bidding 
profits in $. 

Co. 
Scenario 

Co. INIT-LGT SPR-LGT INIT-HVY SPR-HVY 
1 7,798 8.083 7,185 7,315 
2 12,462 18,432 12,219 17,595 
3 1,137 1,104 1,102 1,067 
4 167 44 142 38 
5 21,446 21,656 20,570 20,780 
6 10,876 15,219 10,686 15,001 
7 5.847 9,226 5,847 8,797 
8 2,356 2,356 2,223 2,223 
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parameters. It can be seen that companies 3 and 4 experienced a decrease in bidding 

profits, company 8 has the same profit as the base case, while all the other companies 

experienced an increase in profits compared to the base case. The profits shown in the 

tables take into account the reduction in profits because of the transmission costs. Also, 

upon examination of the output files from the bid-matching modules, it was observed 

that the volume (the number of accepted transactions) was lower than the case where 

transmission was not considered, with 18 proposed transactions being rejected because 

of line flow limitations, and 3770 proposed transactions being rejected because trans­

mission costs were not justified by the energy cost savings. Another interesting aspect 

of modeling transmission is the fact that, since we model transmission cost by the in­

cremental MW-mile cost impact, there are transactions for which the transmission costs 

are negative. In the network module, the transmission costs for an accepted match were 

assumed to be evenly split between the buyer and the seller. In the lightly loaded case, 

the effect of the strategies is very similar to the effects seen without transmission mod­

eling. The fact that company 4 experienced a decrease in profits can be explained from 

Figure 5.1. In this figure, company 4 is located at bus 29, relatively far from companies 

1 and 5, the primary sellers, who are located at buses 4 and 6 respectively. This distance 

results in the rejection of a large nimiber of matches between company 4 and the sellers, 

on the basis of insufficient savings to justify transmission costs, even in the base case. 

In the suboptimal case, the energy cost savings would be even less because the strategy 

decreases the buy bids, and thus more transactions would be rejected between company 

4 and the sellers. For company 8, the only transactions that were allowed by the net­

work module for the suboptimal strategy case, are the ones that by default, are equal 

to the marginal cost bids, and so the profits for this company are identical to the base 

case. Once again suboptimal bidding with incomplete-beta modeling, with adjusted rris 

was simulated, with the new line limits in place. Results are given in Table 5.13 and 

summarized in columns 2 and 3 of Table 5.14. 
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5.7.2 Heavy Line Loading Conditions 

Under the second assumption, each line was now assumed to have a maximum flow 

limit of only 100 MW. Simulations from the previous case were repeated with these new 

limits in place. The base-case profits are given in column 2 of Table 5.15. These are less 

than the base-case profits for the lightly loaded case. For this case, 849 bids were rejected 

because of line flow limitations, and 3026 were rejected because transmission costs are 

not justified by energy cost savings. Base-case and suboptimal bidding simulations were 

again performed for each company and the results are shown in Table 5.15, and sum­

marized in the earlier Table 5.14, labeled "INIT-ITV^V"' and "SPR-HVY" respectively. 

Comparing these columns (4 and 5) of this latter table we find that the efiects on the 

profits are similar to the lightly loaded case. 

The above two sets of assumptions are by no means an exhaustive set of transmission 

conditions under which bidding strategies can be tested. However, they have been 

included to illustrate some of the effects that transmission loading has on bidding profits. 

Table 5.15 Heavy line loading - all-participant profits in $. 

Scenario 
Co. INIT 1-SUB 2-SUB 3-SUB 4-SUB 5-SUB 6-SUB 7-SUB 8-SUB 
1 7,185 7,315 6,202 7,183 7,182 7,295 5,785 6,319 7,195 
2 12,219 12.206 17,595 12,190 12,225 12,152 11,309 11.800 12,219 
3 1,102 821 914 1,067 1,056 1,103 978 1,034 1,106 
4 142 174 181 142 38 136 36 141 142 
5 20,570 20,391 15,981 20,558 20,572 20,780 14,305 17.629 20,607 
6 10,686 10,634 10,255 10,661 10,686 10,439 15,001 11,524 10,686 
7 5,847 0,883 5,731 5,875 5,847 5,827 5,995 8,797 5,847 
8 2,223 2,080 2,081 2,217 2,130 2,223 1,015 1,984 2,223 

Tot. 59978 59508 58943 59897 59740 59958 54429 59232 60028 
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6 SCHEDULING-BASED STRATEGIES 

In Chapter 3, the strategies described were primarily concerned with determining the 

optimal price to bid, given a cost or value of generation, such that other participants' 

bidding behavior was incorporated. The cost was assumed to be a simple number already 

available from, say, economic dispatch calculations. However, in this chapter, scheduling 

considerations are analyzed, that lead to the calculation of this cost. In the first part 

of this chapter, a qualitative treatment of scheduling factors that may affect bidding is 

presented. This treatment is to provide a broad scope for the sample numericcd examples 

that follow in the third part of this chapter. Complete analysis of all the factors is beyond 

the scope of this research work. However, analysis for some typical scenarios is presented. 

The second part of this chapter provides background on utility functions as a means 

of incorporating risk preferences into the participants' bidding strategies. Again, the goal 

of the presentation is to provide a scope for using utility theory results in generation 

bidding strategies, as opposed to providing an exhaustive treatment of utility theory 

itself. References are provided on this subject for the interested reader. 

6.1 Scheduling Considerations in Bidding 

In Section 3.3.1, and in the subsequent analyses presented in Chapter 3, the implicit 

assumption made was that the commitment schedules of the generating units were pre­

determined from native loads or pre-existing firm contracts. In this section, we provide 

some reasons that lead to generating unit commitment schedules being changed from 
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the "base case". Table 6.1 lists the different types of schedule changes that could occur, 

in the columns. A in a cell indicates that this schedule change could occur as a result 

of the reason listed in the corresponding row. An 'X' indicates that it is uncommon for 

this schedule change to occur as a result of this reason. 

Table 6.1 Reasons for changing commitment schedule. 

REASON Startup Delayed Shutdovm Delayed 
Shutdown Startup 

Generation requirements v/ y v/ ^ 1 
Reliabilitj- requirements yj V 
Maintenance requirements y y y 
Environmental requirements X X V y 
Fuel considerations si V 
Efficiency considerations y V 
Market conditions y x/ y 
Secondary effects N/ si n/ 

The following are brief explanations of the reasons: 

• Generation requirements: The forecasted load used in the initial unit commitment 

might be too high or too low, causing a unit status change to be required or 

considered. Also, changes in the system schedule because of other reasons (given 

below) could result in a change in the generation requirement. This could be as 

a result of changing weather conditions or power system events including outages, 

load forecast errors or a unit returning from maintenance earlier than planned. 

• Reliability requirements: Some of the units might be required to be started or 

kept running for reasons such as spinning reserve or to provide reactive support. 

Scheduled transactions might have to be reduced or terminated, or generating 

units might have to be shutdown because of transmission limitations imposed by 

reliability requirements. Such a need could arise at short notice, also because of 

changes in weather conditions or equipment outages. 
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• Maintenance requirements: Unforeseen changes in maintenance schedules and test­

ing procedures might require a change in unit status. The changes in maintenance 

schedules might be a delay or an advancement in a generating unit's availability, 

or an increase or decrease in the expected capacity at which the unit is available. 

Thus, it could result in any of the four scheduling decisions being considered. 

• Environmental requirements: Load fluctuations might lead to unforeseen level of 

emission amounts, causing the shutdown or delayed startup of thermal units. River 

water cooled units might require shutdowns because of heat exchange limits. Loss 

of a scrubber or other air emission control device might also affect the operation of 

thermal units. Other examples include emergency situations in nuclear units and 

water availability or flow requirements in hydro units. 

Fuel considerations: Take-or-pay requirements might force thermal units to startup 

or delay shutdown. Fuel network events, such as transportation disruptions, might 

force thermal units to shutdown or delay their startup. Fuel spot-market conditions 

and related decisions could also affect the operation of fossil units. 

Efficiency considerations: Potential savings from changing commitment status of 

units, other than those identified by the scheduUng algorithm might arise because 

of changed system or market conditions. 

Market Conditions: Supply, demand and price conditions in the spot electricity 

market might provide incentive to change the commitment status. 

Secondary Effects: A change in status of one unit because of one or more of the 

above reasons might result in a secondary effect on system conditions, that might 

require a further change in status of other units. For example, a unit startup for 

reliability requirements might result in an excess generating capability or emission 

limit violation, either of which could result in the shutdown of some other unit. 
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6.2 Factors To Be Considered in Scheduling Decisions 

In addition to the above factors, which arise at the system level, the following gen­

erating unit level characteristics should be considered relevant to bidding decisions: 

• Unit type and size 

• Unit condition 

• Current status 

• Minimum and maximum power output 

• Incremental heat rate curves 

• Minimum up and down times 

• Startup cost components and time requirements 

• Response times and ramp rate Umits 

• Reserve contribution 

• Fuel tjpes and fuel availability 

• Environmental impact 

• Geographical location 

Also, local transmission conditions may play a significant role in changing generating 

unit status. 
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6.3 Effects of Schedule Changes on Economics and Operations 

In this section, the effects of the schedule changes listed in the previous section, 

on economics and on operations are listed. In Tables 6.2 and 6.3, a '?' means that 

the schedule change listed in the columns may or may not have the effect listed in the 

corresponding rows, while a '•/' means that the effect is usually observed. 

Table 6.2 Effects of changing commitment schedule on economics. 

EFFECT Startup Delayed Shutdown Delayed 
Shutdown Startup 

Changes total production cost s/ y V 
Changes marginal cost ? 7 9 9 

Changes selling capability y y 9 9 

Changes buying capability 7 9 y V 
Changes environmental 
requirements and costs y y y/ V 
Changes fuel costs y /̂ y V 
Introduces demand risk 9 ? 9 9 

Table 6.3 Effects of changing commitment schedule on operations. 

AFFECTED AREAS Startup Delayed 
Shutdown 

Shutdown Delayed 
Startup 

Maintenance schedules y/ N/ y/ y/ 
Reliability margins V N/ yj 
Fuel consumption y y y yj 
Emissions y y V yJ 
Operational flexibility a/ V /̂ 

6.4 Modeling Risk Preference in Scheduling Decisions 

Thus far in this dissertation, it has been assumed that the participants under con­

sideration are all expected value maximizers. In other words, the players always seek to 

optimize expected values of profits, without regard to the magnitude of monetary losses, 

resulting from the downside to a rejected bid. This does not seem unreasonable when 
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considering the relatively simple bidding scenarios where the unit commitment is fixed, 

because there is no downside to a rejected bid However, when scheduling consider­

ations such as a change in commitment are incorporated, then situations arise where 

downsides exist in the form of additional system costs incurred or penalties, as will be 

illustrated in later sections. In such situations, expected value maximization alone might 

be insufficient to model the participants' behaviors. When there are distinct downsides 

present in bidding outcomes, utility theory provides procedures to incorporate the risk 

involved. Before we begin to model this risk, the following section presents some of the 

factors that may cause risk in bidding outcomes. 

6.4.1 Classification of Risk 

Several definitions of risk are available. One such definition of risk is, the effect of 

a certain event on an objective function multiplied by the probability of the event. In 

this research, however, we define bidding risk as follows: 

Bidding risk is the product of monetary losses from a certain event, and the probability 

of occurrence of this event. If several mutually exclusive events exist, that may cause a 

monetary loss from bidding, then the total risk is the sum of the risks from each such 

event. 

One type of event that could cause monetary losses is the rejection of a bid by the 

broker if a schedule change has been made by the participant, who expects the bid to be 

accepted. In this case, the monetary losses could occur as reduced revenues, unrecovered 

startup costs, dump power penalties, etc. The probability of occurrence of this event 

is calculated as the complement of the probability of acceptance. Thus, the risk in this 

case can be computed. 

Another type of risk that could cause monetary losses is the outage of a unit in a 

^In reality, the only downside of a rejected bid is the fee to be pzdd to the broker, which is implicitly 
assumed to be small. Even if the fee is substantial, it is reasonable to expect that it would be fixed, 
and not a fimction of the bid price. Thus, it does not enter into the objective function at hand. 
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seller's system, after a bid has been accepted. The probability of outage of the unit 

could be obtained from unit forced outage rates, which are presimiably independent of 

bid acceptance probabilities. So the risk in this case can also be computed. 

The former kind of risk is essentially a risk due to market conditions, i.e., it is a p-rice 

risk. The latter kind of risk is a risk due to generating system conditions, i.e., it is a 

production risk. A third type of risk is that associated with the third-party transmission 

delivery system. This type of risk is very complex to quantify and aneilyze, and is beyond 

the scope of this research work. However, the utility theory approach can be modified 

to include the risk from transmission system effects if participants have a measure of 

these effects that they can trust. 

6.4.2 Utility Functions 

Both kinds of risks described above need to be incorporated in the bidding decisions 

of participants, in order to obtain a realistic and usable bidding strategy. One possible 

way to do this is to maximize the expected value of profit minus the risk instead of 

maximizing expected value of profit. This may or may not lead to a solution that does 

not truly reflect the goals of the participant. For example, a participant may consider 

losing a dollar to be worse than gaining a dollar. So, we need some way to incorporate 

the downside of the bidding also into the profit objective function, while attempting 

to suitably tradeoff between profit and risk. On the other hand, the participant may 

not assign the same amount of negative value to losing or gaining a dollar, under all 

circumstances. For example, a participant who has achieved a large percentage of a 

given periods profit goals might be more willing to risk the loss of a dollar than he was 

at the begirming of a given period. Utility functions offer a systematic and rational way 

to do include such considerations, while allowing the participant to choose his attitudes 

towards risk, termed as risk preferences. Indeed, it can be shown that expected value 

maximization is a special case of a linear utility function, one that gives equal weightage 
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to profit and risk. 

The utility function, in the context of this research, is a measure of the satisfaction 

that a participant derives from a certain level of profit, denoted as by the variable wealth, 

w. The amount of satisfaction, while a non-decreasing function of wealth, need not be 

linearly dependent on wealth. The advantage of using the utility function is to model 

the behavior of a variety of rational participants, with different attitudes toward wealth 

in the presence of uncertainty and risk. In order to incorporate imcertainty and risk into 

the decision making problem, the participants will be assumed to maximize expected 

utility of profits as opposed to expected value of profits. 

Let us consider the following problem involving uncertainty, which is slightly modified 

from an illustrative example from [66]. A participant has two possible outcomes from a 

bidding situation, that would result in profits, or wealths, of A and B respectively. The 

probability of the outcome leading to A is p, and the probability of the other outcome 

is 1 — p. Such a situation is called a lottery and is denoted by: 

L = (P,-4,B) (6.1) 

The probability P basically introduced imcertainty in the wealth outcome. Under 

such situations. Von Neumann and Morgenstem [67] showed that it is possible to con­

s t ruc t  a  u t i l i ty  func t ion  tha t  can  be  used  to  model  the  par t ic ipan t ' s  choice .  I f  U{w)  

represents the utility function of the participant, then the expected utility of the lottery 

L is given by: 

E[U{L)]  =  PU{A)  -t- (1 - P)U{B)  (6.2) 

This is different from the utility of the expected profit from the lottery, which is: 

U{E[L])  =  U{PA -f (1 - P)B)  (6.3) 

The above equation is simply the utility of the expected value of profit from the 

lottery, and maximizing it is identical to maximizing expected value of profit, because 
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utility functions are monotonically increasing (additional wealth always increases util­

ity, although the amount of increase may vary.). However, an expected utility maxi­

mizing participant maximizes the function given by Equation 6.2. The Von Neumann-

Morgenstem utility functions can be used to model risk preferences precisely because 

of this. A participant who maximizes expected utility has different attitudes toward 

decisions in the face of uncertainty, depending on the level of wealth they have achieved. 

These differences may not depend on the total wealth they possess, i.e., on the absolute 

size of the participant, but rather, on the incremental amount of wealth they have ac­

quired in a given bidding period. In other words, regardless of the size of the participant, 

they might have different attitudes toward risk, based upon the recent performance in 

the market. 

Now, a person is a risk averter relative to a lottery if the quantity in Equation 6.3 is 

greater than the quantity in Equation 6.2. In other words, the person prefers a certain 

outcome to an uncertain one with the same expected value. For this to be true, we need 

to select U{w) to be concave. It is also possible to model a risk seeker, in other words, 

a participant with the opposite behavior, by selecting a convex U(w). However, in this 

research, we will assimie that all participants are risk averse. Now, even though we 

assume that all participants are risk averse, the degree to which they are risk averse may 

vary depending on a lot of factors. In other words, all participants need not necessarily 

have the same amount of willingness (or lack thereof) to take risk under all situations. 

To quantify this degree of risk aversion, the Arrow-Pratt [68] coefficient of absolute risk 

aversion, r, is defined as follows: 

r = - ^  ( 6 . 4 )  
U'(w)  ^  '  

This measure is positive if the participant is a risk averter^. One other detail re­

garding utility functions will be examined before we relate utility function theory to 

^For a participant who maximizes expected value of profit, as in Chapter 3, this measure is zero. 
Such a participant is Sedd to be risk neutrai 
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strategic bidding. This is the derivative of the measure r with respect to wealth. In 

other words, how does the participant's degree of risk aversion vary with wealth? We 

would intuitively expect most participants in common decision making situations to be 

less risk averse as wealth increases. For example, a large, profitable corporation would 

be less averse to losing $100,000 than a smaller or less profitable company. Thus it would 

seem as though a logical choice for a utility function should be one that has r'{w) < 0. 

Consider the modified exponential utility fimction given below; 

Clearly, this could be a choice of utility function to model our participants. Such 

a participant is said to have decreasing absolute risk aversion with increasing wealth 

(DARA). However, with a lack of much knowledge on how participants' risk taking 

behaviors will be in the deregulated future, we cannot make such a strong assximption. 

Thus we need to be able to model participants that have constant, or perhaps even 

increasing absolute risk aversion with increasing wealth (CARA and lARA). For these, 

two possible utility functions are the exponential and the quadratic utility functions 

respectively: 

U{w)  =  1-6-" '  ,0.5 

r ' {w)  =  —Q.2bw~^  — O.Zlow < 0 (6.5) 

U{w)  =1-6- ' "  

=> r{w) = 1 > 0 

=» r'{w) = 0 (6.6) 

U (w)  =  w — aw^  

(6.7) 
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Thus, we have illustrated the use of different forms of utility functions to model 

different participants. However, it would be convenient for implementation, and add 

to the flexibility of modeling, if one form of utility function could be used to model all 

three kinds of risk attitudes, DARA, CARA and lARA. Such a form is the Expo-Power 

utility function proposed by Saha in [4]. This function is given by: 

U{w)  =9-

. , 1 — a + a^w'^ 
r(it;) = (6.8) 

w 

where a, 3, 9 are positive parameters. By \-arying these parameters, we can achieve 

varying degrees of risk aversion. For example, for a = 1, we get CARA: for a = 0.8 we 

get DARA, etc. Figures 6.1 and 6.2 illustrate the effects of a and /? on the Expo-Power 

utility. In Figure 6.1, ^ = 1, and 3 = 4.1667 x 10""^. In Figure 6.2, 9 = 1, and a = 1. 

Figure 6.3 illustrates the \*ariation of t { w )  with wealth for different values of a .  

Again, for this figure, 9 = 1, and 3 = 4.1667 x lO""*. 

For the rest of this chapter, the utility function used to model participant risk atti­

tudes will be assimied to be of the Expo-Power form. 

6.4.3 Modeling Risk in Strategic Bidding Using Utility Functions 

Now, we will relate the utility function concepts described above to the strategic bid­

ding problem. Consider the objective function from Chapter 3, Equation 6.9, repeated 

here: 
Maximize 

Pb Sipb)ic-pb) (6.9) 

This objective function represents an expected value of profit maximizing participant, 

with no downside to a rejected bid. Now let us assxune that the participant is an expected 

utility maximizer. Then, the objective is modified as follows: 
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Figure 6.3 Variation of coefficient of absolute risk aversion with a. 

Maximize 
Pb S{pb)U{c-pb)= 

S ipb)  [d  - (6.10) 

In this equation, a, /3, and d are the usual parameters of the utility function, c and 

Pb are the usual cost and bid price values. S{jpb) is the probability of acceptance of bid 

price Pb- q is the quantity of energy being bid for, i.e., it represents the size of the bid. 

The new parameter introduced here, is an initial wealth parameter, that can be used 

to represent the current wealth of the participant, at the time the bidding decision is 

made. It is distinguished from total wealth w by the fact that it is a constant, and is a 

parameter selected by the user. Thus overall wealth of the participant, for the purposes 

of evaluating a bid of size q is given by: 

w = W-i -q(c  — Pb)  (6.11) 

W will affect the outcome of the suboptimal bidding procedure, depending on the 

choice of the other parameters. The reason for including it is twofold: 
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• W adds to the model flexibility by providing one more way to fine tmie risk atti-

tudes-

• A positive W is required when using non-integral values for a, in the presence of 

events that cause a financial loss. This is because, such events result in a negative 

incremental utility (a negative wealth), and with non-integral q's, W is required 

to avoid complex number solutions to the suboptimal bidding problem. 

Similarly, for a seller, the objective function now becomes: 

The suboptimeil bidding problem now reduces to maximizing the objective functions 

given by Equation 6.10 and 6.12. The derivatives of the Expo-Power equation can 

be easily calculated, and maximization of the concave objective can be performed by 

any of a number of classical optimization techniques. Examples of such analyses will 

be presented in later sections of this chapter. In the next section, we examine some 

scenarios that illustrate what scheduling considerations could afiiect the bidding process. 

6.5 Scheduling Considerations — Illustrative Scenarios 

6.5.1 Change in Generation Requirements 

This section illustrates a change in commitment schedule that is mandated by a 

change in generation requirement. Such a change could arise because of a changed load 

forecast, weather conditions, etc., which was not foreseen at the initial conmiitment 

stage. The following two cases illustrate the options available to the participant when 

the generating capacity committed for the current hour is too high or too low for the 

following hour. 

Maximize 
Ps  S{ps)U{ps  -  c)= 

(6.12) 
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I. Generation committed is too low. 

The options that might be available to the participant include; 

(a) Additional unit startup (with or without additional bids to buy or sell) 

(b) Additional unit delayed shutdown (with or without additional bids to buy 

sell) 

(c) Bid to buy with brokerage 

(d) Attempt to buy or sell through bilateral transactions 

(e) Default on generation requirement with penalty incurred 

(f) Use available interruptible native load contracts 

(g) Combination of above 

2. Generation committed is too high. 

The options that might be available to the participant are: 

(a) Additional unit startup (with or without additional bids to buy or sell) 

(b) Additional unit delayed shutdown (with or without additional bids to buy 

sell) 

(c) Bid to buy with brokerage 

(d) Attempt to buy or sell through bilateral transactions 

(e) Default on generation requirement with penalty incurred 

(f) Use available interruptible native load contracts 

(g) Combination of above 
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6.5.2 An Increase in Reliability Requirements 

This section illustrates a change in commitment schedule required for reliability rea­

sons, typically a must-run situation for units, or em increased spinning reserve require­

ment. The options available to the participant would be: 

1. Generation committed in an area is too low 

(a) Additional unit startup (with or without additional bids to buy or sell) 

(b) Additional unit delayed shutdown (with or without additional bids to buy or 

sell) 

(c) Bid to buy with brokerage 

(d) Attempt to buy or sell through bilateral transactions 

(e) Default on generation requirement with penalty incurred 

(f) Use available interruptible native load contracts 

(g) Combination of above 

2. Generation committed in an area is too high 

(a) Additional unit shutdown (with or without additional bids to buy or sell) 

(b) Additional unit delayed startup (with or without additional bids to buy or 

sell) 

(c) Bid to sell with brokerage 

(d) Attempt to buy or sell through bilateral transactions 

(e) Defaiilt on generation requirement with penalty incurred 

(f) Combination of above 



www.manaraa.com

121 

6.5.3 A Change in Maintenance Requirements 

This section illustrates the cases when generating units that are down for mainte­

nance come on line either later or earlier than expected during the initial commitment 

stage. It is not unusual for units to have a must-run requirement immediately following 

maintenance, for testing reasons. Such a status will be assTimed in the following cases, 

so that a change in conamitment will be required. This should not be considered as 

unusual since all units realistically have a minimum rrm time after startup. 

1. Unit maintenance time is longer than expected and unit is unavailable for imme­

diate startup 

This could lead to a shortage in online generation from the planned scenario. The 

options available to the participant would be: 

(a) Other unit startup (with or without additional bids to buy or sell) 

(b) Other unit delayed shutdown (with or without additional bids to buy or sell) 

(c) Bid to buy with brokerage 

(d) Attempt to buy or sell through bilateral transactions 

(e) Default on generation requirement with penalty incurred 

(f) Use available interruptible native load contracts 

(g) Combination of above 

2. Unit maintenance time is shorter than expected and unit is started sooner than 

planned 

This could lead to a surplus in online generation if the unit is started. Then, the 

options available to the participant would be: 

(a) Other unit shutdown (with or without additional bids to buy or sell) 

(b) Other unit delayed startup (with or without additional bids to buy or sell) 
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(c) Bid to sell with brokerage 

(d) Attempt to buy or sell through bilateral transactions 

(e) Default on generation reqiiirement with penalty incurred 

(f) Combination of above 

6.5.4 Unit Environmental Requirements 

This section illustrates the case where a unit must be shutdown because of enwon-

mental reasons, not foreseen at the initial commitment stage. Such a situation might 

arise because of emission limits being reached, or weather conditions as in the case of 

river cooled thermal units. Loss of a scrubber or other emission-control device on a 

thermal unit might also be a cause. Other examples include emergency situations at 

nuclear units, and water availability or flow requirements for hydro units. The options 

available to the participant are: 

(a) Specified unit backdown or shutdown (with or without additional bids to buy) 

(b) Specified unit delayed startup (with or without additional bids to buy) 

(c) Other unit delayed shutdown (with or without additional bids to buy or sell) 

(d) Other unit startup (with or without additional bids to buy or sell) 

(e) Bid to buy or sell with brokerage 

(f) Attempt to buy or sell through bilateral transactions 

(g) Default on generation requirement with penalty incurred 

(h) Use available intemiptible native load contracts 

(i) Combination of above 
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6.5.5 Unit Fuel Considerations 

Fuel considerations in the operation of thermal units are very complex, and often lead 

to changes in the original schedules of units. Under certain fuel network conditions, fuel 

suppliers strictly enforce take-or-pay requirements. Thus, participants have to conform 

to the requirements with short notice, not foreseen in the initial commitment stage. 

Also, fuel network problems could lead to the shutdown of units. Thus, two kinds of 

scenarios that could arise are described in the following cases. 

1. Increased fuel consumption requirements 

The options available to the participant include: 

(a) Specified unit startup (with or without additional bids to sell) 

(b) Specified unit delayed shutdown (with or without additional bids to sell) 

(c) Other unit delayed startup (with or without additional bids to buy or sell) 

(d) Other unit shutdown (with or without additional bids to buy or sell) 

(e) Bid to buy or sell with brokerage 

(f) Attempt to buy or sell through bilateral transactions 

(g) Default on generation requirement with penalty incurred 

(h) Combination of above 

2. Decreased fuel availability. 

The options available to the participant would be: 

(a) Specified unit shutdown (with or without additional bids to buy) 

(b) Specified unit delayed startup (with or without additional bids to buy) 

(c) Other unit delayed shutdown (with or without additional bids to buy or sell) 

(d) Other unit startup (with or without additional bids to buy or sell) 
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(e) Bid to buy or sell with brokerage 

(f) Attempt to buy or sell through bilateral transactions 

(g) Default on generation requirement with penalty incurred 

(h) Use available interruptible native load contracts 

(i) Combination of above 

6.5.6 Efficiency Considerations 

This subsection illustrates the scenarios when changes in commitment schedule could 

result in increased efficiency and savings. The changes are other than those identified 

by the commitment program, which only looks to schedule units for the forecasted 

generations requirement. This section explores the possibility of commitment change 

that is contingent upon a change in generation requirement because of potential sales or 

purchases. 

1. Avoiding shutting down an efficient unit during low load periods 

This situation typically arises for participants with a low minimum load compared 

to their average load, and who own efficient units with a large Pmin- If partic­

ipant could sell a sufficient amount of energy in the low load periods to keep the 

unit running, significant savings could be realized. The options available are: 

(a) Keep specified unit on (with bid to sell at low price) 

(b) Dump power with incurred penalty 

(c) Attempt to sell through bilateral transactions 

(d) Combination of above 

2. Avoiding starting an inefficient unit during peal load periods 

This situation arises for utilities with a high peak load compared to average load, 
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and who own one or more ineflBcient units. For the peak hours, which may be as 

few as 3 or 4, expensive peaking units are started up. Avoiding these startups 

might result in significant savings. The options available are: 

(a) Keep specified unit off (with bid to buy at high price) 

(b) Default on generation requirement with penalty incurred 

(c) Attempt to buy through bilateral transactions 

(d) Combination of above 

6.5.7 Market Condition Considerations 

This subsection illustrates the cases where market conditions provide an opportunity 

for additional profits when commitment schedules are changed. The two cases considered 

are when market prices are unusually high and low. 

1. Market price forecast is high. 

In case of such a forecast, if a participant has a relatively low percentage of their 

generating capacity committed, then the following options are available: 

(a) Bid to sell as appropriate firom currently committed or operating units only 

(b) Consider starting additional units and bid to sell 

(c) Attempt to sell through bilateral transactions 

(d) Combination from above 

2. Market price is forecast is low. 

In case of such a forecast, if the participant has a relatively high percentage of 

their generating capacity committed, then the following options are available: 

(a) Bid to buy as appropriate considering only decommitted or non-operating 

units only 
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(b) Consider shutting down additional units and bid to buy 

(c) Attempt to buy through bilateral transactions 

(d) Combination of above 

6.5.8 Secondary-Eflfect Considerations 

The secondary effects on schedule changes, as described in Section 6.1, also result in 

one or more of the situations illustrated above, and will not be illustrated separately. 

Also, dependent on the resultant changes in unit status and transactions, the resultant 

net interchange in the hours affected may be more or less than initially planned. 

6.6 Scheduling Considerations — Numerical Examples 

In this section, the concepts of utility using the Expo-Power utility function will 

be illustrated and contrasted with expected value maximization approach, for various 

scenarios where scheduling considerations come into play. 

6.6.1 Selling/Buying Without Changing Commitment Order 

Selling and buying without changing commitment order from a base case unit com­

mitment was examined in Chapter 3. In this section, the approach is essentially similar 

to that approach, except that expected utility maximization is illustrated. However, in 

using the expected utility maximization approach in conjunction with the Expo-Power 

utility function, it must be mentioned that the choice of the parameters W, a and /? 

affect the optimal solution. An increase in unambiguously results in an increase in the 

participant's absolute risk aversion, in other words, the participant will choose a more 

conservative bid price with increasing j3. The effect of W and a are more complex. These 

are illustrated in Figures 6.4-6.6. In Figure 6.4, the expected utility from a sale scenario 

is illustrated. In the example shown, the selling participant models competitor behavior 
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in the form of an incomplete-beta function, and uses the Expo-Power objective function 

given in Equation 6.12. For this particular scenario, the parameters for optimization are 

as follows: 

c = 6.67 ^/MWH (generating cost) 

d = 1: P = 4.1667 X 10"°'^ (utility function parameters) 

a = 15.7103; b = 4.6644; m = 15.0000 (incomplete-beta function parameters) 

Given these parameters, the on each curve represents the suboptimal,^ normalized 

bid price x for various values of initial wealth, W, when a = 1. As we can see, this 

value remains constant at 0.5315 $/MWH. Thus, we can see that selecting a = 1 indeed 

does correspond to constant absolute risk aversion (CARA), and the participant would 

show the Scime degree of risk aversion, regardless of the level of initial wealth. Figure 6.5 

shows the case where all other parameters are the same as before, except a = 1.1. This 

corresponds to increasing absolute risk aversion with wealth (lARA). Though it is not 

easily apparent from the figure, the suboptimal bid price does shift to the left (lower val­

ues) for each higher-wealth curve, giving values of 0.4745, 0.4716, and 0.4693 respective 

for initial wealths of 5000, 6000, and 7000. Since we are considering a seller, this does 

mean that the seller becomes more "conservative" in its bidding strategy with increasing 

wealth, for a constant bid size. This may not be common in real life. But it certainly 

can be modeled if the situation arises, by simply selecting a value for a > 1. Figure 6.6 

shows the case of decreasing absolute risk aversion with wealth (DARA), which is the 

most conventional assumption of risk attitudes in commodity trading models. Here, 

a = 0.8. For this case, the suboptimal values increase with increasing wealth, resulting 

in values of 0.5607, 0.5620, and 0.5629 respectively for initial wealths of 5000, 6000, and 

7000. Thus, we can see that the seller bids a more bid price with an increase in 

wealth, for a constant bid size. 

^Rather than implement customized code for each such scenario, the results shown in this chapter 
were generated using Matlab Version 5.0, £md its Optimization Toolbox. The specific routines used 
were fmin for unconstrained maximization, cind constr for constrained maximization. 
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Figure 6.6 Variation of optimal solution with wealth: DARA. 

The proposed expected utility model results in interesting changes in suboptimal 

bids for different parameter values, even for the simple case of static commitment order. 

In the following sections, we attempt to model some of the complexities involved in 

including schedule changes in the objective function. 

6.6.2 Avoiding Startups/Shutdowns 

In this section three situations will be analyzed that could involve a participant con­

sidering a change in the commitment schedule of generating units. In order to do this, 

two approaches will be presented for each of the different scenarios. One is an expected 

profit maximization approach, and the other is an expected utility maximization ap­

proach. The expected profit maximization approach has been illustrated in reasonable 

detail in previous chapters. 
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6.6.2.1 One-Hour Purchase with Avoided Startup 

The first scenario involves a small system of four generating units, where the purchase 

of energj' during one hour could result in avoiding the startup of an inefficient peaking 

unit, with significant savings. Let us consider a four generating unit system that has a 

base case unit conamitment for a period of 168 hours as shown in Figure 6.7. The dashed 

curve represents system generating requirement plus reserves. The curve above that is 

the online capacity curve. It can be seen that in certain periods, a generating unit needs 

to be started up to meet spinning reserve requirement. Upon closer examination of the 

generating unit characteristics (not shown), it was observed that one of the peaking 

units was started up at hour 42, and was on until hour 48, when it was shut down. This 

is because the unit's minimum up time is six hours. Also, upon examination of the load 

curve, it was observed that a purchase of 20 MW during hour 42 would be sufficient to 

avoid this startup and shutdown, thus resulting in savings. In order to determine the 

magnitude of savings, a second unit commitment was performed, with the load for hour 

42 reduced by 20 MW. This unit commitment is shown in Figure 6.8. The difference 

between the generating costs resulting from the two commitments was determined to be 

$275,040 - S271,810 = $3230. Thus, the value of the purchase of 20 MW for one hour was 

determined as $3230/(20*1) = 161.5 $/MWH. This value will now be used to analyze 

the bidding strategy of the participant, from both an expected profit maximization and 

an expected utility maximization point of view. 

The bid distribution parameters for the participant will be assumed to be as follows: 

Beta distribution with 

a = 15.7103 

b = 4.6644 

m = 15.0000 

The Expo-Power utility fimction parameters will be assumed to be: 
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a = 1 

,/? = 4.1667 X 10--' 

e = i 

W = Q 

Also, cost of generation c = 161.5 S/MWH. For this case, the expected value maximiza­

tion result is obtained by maximizing the following objective: 

F{x ,a ,b){c  — mx)  (6.13) 

where F{x ,  a ,  b)  is the incomplete-beta function, and represents the probability of 

success of bid x, S (x). The expected utility maximization result is obtained by maxi­

mizing the following objective: 

F(X, a, b)  ( e  -  e -a(M'-+20(c-mx))- j 

The optimization results are given in Table 6.4. EV'-Max indicates expected value 

maximization, and EU-Max indicates expected utility maxintiization. It can be seen that 

the expected value maximization solution has a lower bid price (x* and pj) than the 

expected utility maximization solution. This is consistent with the fact that the latter 

solution takes into effect the risk aversion of the buyer. Consequently, the probability of 

acceptance (S(x*')), and expected utility {EUib{pl)) suboptimal bid x" are higher 

for the latter case. 

An interesting point to be noted is regarding c, which is very large for current day 

fuel prices. This indicates that there may be significant cost savings for a participant, 

if a longer term contract were entered into, for purchase of peak capacity and energy. 

The effect of such a contract on bidding strategies would be a lower c, which will lead to 

a lower x*. In the next two examples, we examine cases of where c is much lower, and 

falls within a reasonable price range. 
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Table 6.4 Variation of suboptimal •values of 4-unit s\'stem 
with strategy. 

Strategy x' Pb' SiPtV EibiPb*) Ehibipb") 
EV-Max 
EU-Max 

0.9665 
0.9927 

14.4975 
14.8903 

0.9992 
0.9999 

146.88 
146.61 

0.9946 
0.9954 

6.6.2.2 11-Hour Purchase with Avoided Startups 

The following two scenarios involve the analysis of purchase and sale of power for a 

larger 16-unit system, over a period of time longer than one hour. The analysis presented 

is meant to be an illustration of some of the considerations that could go into the decision 

of whether to bid or not, and if so, what bid price to select. 

Let us now consider a 16-unit system that has a base case unit commitment for a 

period of 168 hours as shown in Figure 6.9. Upon examination of the load curve, it was 

observed that a purchase of 200 MW during hours 14 through 24 would be required to 

avoid some startups and shutdowns, thus resulting in savings. In order to determine 

the magnitude of savings, a second unit commitment was performed, with the load for 

hours 14 through 24 reduced by 200 MW. This unit commitment is shown in Figure 6.10. 

The difference between the generating costs resulting from the two commitments was 

determined to be $2,396,200 - $2,383,400 = $12,800. Thus, the value of the purchase 

of 200 MW for 11 hours was determined as $12,800/(200*11) = 5.8182 $/MWH. This 

value will now be used to analyze the bidding strategy of the participant. 

The same bid distribution and utility function parameters will be assumed again 

for this participant. For the first hour of the proposed purchase bid, the modeling is 

identical to that for the previous case. However, once the bid has been accepted, and 

the purchase schedule is committed to, the participant has to consider the possibility 

of the subsequent hours' bids being rejected. Unlike in the previous cases, there is a 

monetary impact of a rejected bid for this situation. The impact could be modeled in 
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number of detailed ways including a decision tree analyzing the possible actions of the 

participant. However, to keep the modeling clear conceptually, we choose to model this 

"downside" risk simply by a constant penalty, p $/MWH. The justification for this is 

that in the worst case, a rejected bid can be replaced by energy from one of a number 

of alternative sources, such as peaking units, dispatchable contracts or even emergency 

power contracts, p simply represents the cost of using one of these alternatives'^. A 

conservative participant might use the most expensive of these sources to model the 

downside risk. Adding this component into the model, the expected value maximization 

and expected utility maximization objectives become: 

F{x,  a ,  6)(c - mx) + (1 - F(x,  a ,  b)){—p) (6.15) 

F{x,  a ,  b)  (e  -  e-^(^+2oo{c-mx)) '»  j  ^  b))  (O -  (6.I6) 

For the first hour of the proposed purchase, the value for p = 0, because if the bid 

is rejected, the participant can choose to stay with the original commitment schedule. 

For subsequent hours, let us assume that p = 20. Then, Table 6.5 shows the values for 

suboptimal bid prices for the first hour and the subsequent hours. Since the penalty for 

the first hour is different from the penalty in the subsequent hoxirs, two different sets of 

solutions are obtained. 

Table 6.5 Variation of suboptimal values of 16-unit system with strategy 
(purchase case). 

Strategy x* Pb* sipbv EibiPb") euibipn 
EV-Max, 1st hour 
EU-Max, 1st hour 

EV-Max, other hours 
EU-Max, other hours 

0.3617 
0.3621 
0.9196 
0.9341 

5.4260 
5.4318 

13.7938 
14.0114 

6.8802E-5 
6.9825E-5 

0.9733 
0.9874 

2.6981E-5 
2.6978E-5 
-8.2963 
-8.3424 

2.2121E-6 
2.2124E-6 
-1.0331 
-1.0212 

^.^Iso conceivable, is a p that varies with the amount of time that is left in the transaction, or one 
that is dependent on how much wealth has been recovered in the past hours. However, these axe more 
complex to model, and we assume a constant p for this scenario. 
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It may be seen that once again, expected utility maximization leads to a more con­

servative (higher) buy bid than expected value maximization. Also, it may be seen that 

this effect is more pronounced for the subsequent hours case, when there is a non-zero 

downside. In other words, when the downside risk is significantly large, the participant's 

risk aversion is observed to have a larger effect. Another interesting observation is that 

the maximum expected utility in the case where p = 20, is negative. This is an indica­

tion to the participant that the pxirchase bid is not an advisable activity. This is also 

consistent with the fact that c = 5.8182 is a relatively low value of generation, given the 

bid distribution parameters. In other words, for this purchase bid, the participant's cost 

curve is not competitive enough to justify the risks. Thus, we can see that the results 

from the suboptimai bidding strategy predict a situation where the participant should 

not submit a buy bid. 

6.6.2.3 15-Hoiir Sale with Avoided Shutdown 

Let us now consider the 16-unit system again, from the point of view of a seller. From 

the load it was observed that a sale of 120 MW during hours 20 through 34 would be 

required to avoid the shutdown of a base load unit during off-peak hours, thus resulting 

in savings. In order to determine the magnitude of savings, a second unit commitment 

was performed, with the load for hours 20 through 34 increased by 120 MW. This 

unit commitment is shown in Figure 6.11. The difference between the generating costs 

resulting from the two commitments was determined to be $2,408,200 - $2,396,200 = 

$12,000. Thus, the additional cost of the sale of 120 MW for 15 hours was determined 

to be c = 12,000/(120 * 15) = 6.66 $/MWH. This value will now be used to analyze the 

bidding strategy of the participant. 

Again, the same bid distribution and utility function parameters will be used. Also, 

a penalty p = 20 will be assessed for a rejected bid, in hours subsequent to the first hour 

of the proposed sale. This penalty is a representation of alternatives the participant 
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Figure 6.11 Sale case unit commitment for 16-unit system. 

might have to satisfy generation requirement constraints, such as shutting down units, 

dispatchable sale contracts, pumped storage units, or even dumping power into the 

system, each with its associated cost. The objectives for expected value maximization 

and expected utility maxinaization become: 

(1 — F { x ,a , b ) ) (Tnx — c) + F ( x , a , b ) { — p )  (6.17) 

(1 - F { X ,  a ,  b ) )  ( 9  -  e - ' » ( ' ^ + 1 2 0 ( m x - c ) ) - j ^ _ ̂ -0{W-l2Op)''^ (g 

Results of optimization are given in Table 6.6. It may be observed that expected 

utility maximization bid prices are lower (more conservative from the seller's point of 

view) than expected value maximization prices. Also, this effect is more pronounced for 

the case where the penalty is non-zero. Thus, depending on if the participant chooses 

to use expected value maximization, or expected utility maximization, i.e., depending 

on whether the participant is risk neutral, or risk averse, the analysis presented shows 

what the suboptimal bid price should be. 
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Table 6.6 Variation of suboptimal values of 16-unit system with strategy 
(sale case). 

Strategy X' Ps' SijPsY Elbijps') EUibiPs') 
EV-Max, 1st hour 
EU-Max, 1st hour 

EV-Max, other hours 
EU-Max, other hours 

0.7077 
0.7016 
0.5864 
0.5545 

10.6154 
10.5241 
8.7964 
8.3174 

0.7676 
0.7849 
0.9661 
0.9823 

3.0311 
3.0251 
1.3766 
1.2638 

0.1374 
0.1376 
0.0392 
0.0472 

The scenarios just presented are examples of buying and selling situations with a 

commitment change being considered. They are by no means an exhaustive list of such 

scenarios. However, the purpose of illustrating the complexities involved in considering 

commitment changes in bidding decisions is achieved by these scenarios. 

6.6.3 Simiiltaiieous Buy/Sell Activity 

The previous section considered cases where the participant had already made a 

decision to bid for either buying or selling at a given hour. In this section, we consider 

the situation where the participant bids to buy and sell simultaneously. In this situation, 

let us assume that the participant has, by means similar to the above section, determined 

a cost/value of the energy for both the purchase and the sale block of energy. Let these 

costs be given by Cb and Cs respectively. Then, three possible cases are of interest. 

These cases arise out of three possible comprehensive production cost shapes, shown in 

Figure 6.12. 

In the first case, the operating point is such that Cf, < Cs- In the other two cases, ca > 

Cs, with the difference being greater in the last case. The following analyses illustrate 

the application of the expected value and expected utility maximizing approaches to 

these three cases. 
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Figure 6.12 Simultaneous buy/sell: three possible cases. 

6.6.3.1 Case 1 where Cb < 

Let us assume that Cb = 8.99 $/MWH, and = 9.04 $/MWH, for a block of energy, 

say 200 MW. All other parameters for bid distributions and utility function remain the 

same. Further, let us assume that the participant considers both buy and sell bids to be 

distributed according to the same distribution^. Then, the objectives for expected value 

and expected utility maximization models are as follows: 

(1 - F(xs, a, b)){mxs -  c,) + F{xb,  a ,  h){cb — rnxb)  (6.19) 

(1 - F{Xs, a, 6)) {e - e-^Cl^+ZOOCmx.-c.))" j ^ _ g-/3(W^+200(c6-mx»))» j (g 20) 

where Xg are the normalized buy and sell bid prices respectively. It can be observed 

for this case, that the objective function is separable into two separate cases, sell and 

buy. Suboptimal solutions are given in Table 6.7. The usual observations can be made 

®None of these assumptions are restrictive from the point of view of modeling: they are made 
primarily for the sake of simplicity. 
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regarding the effect of risk aversion on the suboptimal values. Again, depending on the 

risk attitudes of the participant, the analysis shows different solutions to the bidding 

problem, with the expected utility maximization strategy being the more "conservative" 

of the two strategies. This means that the sell bid price is lower, and the buy bid price 

is higher than in the expected value maximization strategy. 

Table 6.7 Variation of suboptimal values for simultaneous buy/sell - Case 1. 

Strategy Xb* Xs' Ph' Ps' Eib{pb' , P s ' )  EUib{pb\ P s ' )  
EV-Max 
EU-Max 

0.5527 
0.5638 

0.7551 
0.7499 

8.2898 
8.3069 

11.3270 
11.2480 

1.3920 
1.3897 

0.1057 
0.1058 

6.6.3.2 Case 2 where > Cs 

Let us assume that Cj, = 10.99 $/MWH, and Cj = 9.04 Then the objectives 

are the same as before, and results of optimization are shown in Table 6.8. The effect of 

modeling risk aversion through the utility function, is again an increase in the suboptimal 

buy bid price and a decrease in the suboptimal sell bid price. Depending on the risk 

attitudes of the participant, the analysis shows different solutions to the bidding problem. 

Table 6.8 Variation of suboptimal values for simultaneous buy/sell - Case 2. 

Strategy Xb' Pb" Ps* Eib{pb',ps*) EUib{pb\Ps') 

EV-Max 
EU-Max 

0.6653 
0.6675 

0.7551 
0.7499 

9.9795 
10.0126 

11.3270 
11.2484 

1.5114 
1.5092 

0.1152 
0.1154 

6.6.3.3 Case 3 where Cb » c. 

Let us assume that q, = 12.99 $/MWH, and Cg = 8.04 $/MWH. From the modeling 

point of view, this situation poses an interesting problem. Since the broker matches 

highest bidder for buying to lowest bidder for selling, there is a higher probability in 

this case, that the participant might be matched to sell to itself. In the event of such 
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a match, the savings are not real. To avoid this situation, an additional constraint has 

to be imposed, and that is Xb < Xg- This will prevent the broker from matching the 

participant's buy bid to its own sell bid. However, the more profitable buy bid situation 

(more profitable because Cb ^ Cs) is artificially limited by this constraint. Thus, we 

expect the optimal solution to be at the boundary, where is xj, = Xj. Table 6.9 shows 

that this is indeed the case. Further, for the expected utility maximization model with 

constraint imposed, the suboptimal bid prices are lower than those for the expected value 

maximization model with constraint imposed. Thus, once again risk aversion effects are 

illustrated, with the additional constraint imposed if the participemt wishes to avoid the 

situation where there is a match between two of his own bids. 

Table 6.9 Variation of suboptimal values for simultaneous buy/sell - Case 3. 

Strategy ^6* Pb' Ps' Eib{pb',Ps') EUib{pb',Ps') 

EV-Max 0.7619 0.7326 11.4290 10.9885 2.6895 0.2015 
(no addl. constr.) 

EU-Max 0.7660 0.7254 11.4898 10.8803 2.6843 0.2019 
(no addl. constr.) 

EV-Max 0.7422 0.7422 11.1336 11.1336 2.6641 0.1981 
(with addl. constr.) 

EU-Max 0.7393 0.7393 11.0899 11.0899 2.6631 0.1982 
(with addl. constr.) 

6.6.4 Consideration of Take-or-Pay Fuel Contract Requirements 

In this section, a fuel contract with a take-or-pay fuel block is included in the bidding 

considerations. Let us assume that the selling participant is considering a taJce-or-pay 

fuel contract that can be consumed by dispatching a certain mix of tmits at 100 MW. 

Further, let us assiune that the cost of this contract, if used by this mix of units, works 

out to be 8 $/MWH. The participant now considers satisfying take-or-pay requirements 

by bidding to sell 100 MW in the brokerage. For this situation, c = 8, and the penalty 

for a rejected bid is simply the cost of the take-or-pay contract itself. So we can model 



www.manaraa.com

142 

it as a 8 $/MWH penalty-. This problem then reduces to the earlier case of considering 

a penalty for rejected bid, with p = 8. The objective functions are similar to the ones 

given in Equations 6.17 and 6.18. 

Results of optimization are given in Table 6.10, with the usual implications. If the 

participant thus wishes to satisfy take-or-pay requirements by bidding to sell through 

the brokerage, then the bid prices for different risk attitudes should be as shown in 

Table 6.10. 

Table 6.10 Variation of suboptimal values for take-or-pay 
fuel block consideration. 

Strategy Xs'  Ps' SiPsT EibiPs*) EUii,{ps') 
EV-Max 
EU-Max 

0.6400 
0.6275 

9.6000 
9.4126 

0.9122 
0.9287 

0.7574 
0.7411 

0.0241 
0.0249 

6.6.5 System Health Considerations 

Previously, the risk that we have included in modeling has been price risk. Production 

risk is the other kind of risk that exists, and will be included in the model as follows. 

First, the assumption is made that the two kinds of risks are independent. In other 

words, the participant's generating system health, for example, has no effect on market 

prices. This assumption is not always satisfied. For example, if the participant is 

a large generating company owning a significant percentage of a region's generating 

capacity, then market prices and bids could be affected by perceived outage risks in that 

participant's generation mix. A typical example would be the northeastern region of the 

United States at the time of writing this dissertation, where certain large nuclear units 

are under risk of outage periodically. This situation does have a tangible effect on the 

market behavior of participants of the energy markets in that region. However, for a 

number of situations the independence requirement is satisfied. In this section, we will 

model a unit outage possibility as part of the bidding decision. 
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Figure 6.13 Base case unit commitment for 16-unit system (with unit out­
age). 
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Figure 6.14 Sale case unit commitment for 16-unit system (with unit out­
age). 
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Let us consider again, the 16-unit system of Section 6.6.2.3. for the identical sale of 

120 MW over a period of 15 hours, in hours 20 through 34. Now, we add the possibility 

that the outage of one of the generating units, with a forced outage rate (f.o.r.) of 4.1 %, 

i.e., with a probability of forced outage, Pf.o.r of 0.041, is to be modeled. In other words, 

after the participant has agreed to the ssde, this imit could experience an outage. That 

could have a deleterious effect on the profitability if the sale. To model this, we perform 

two more unit commitment simulations. The first is a base case simulation with the unit 

unavailable, smd a sale case with the 15 hour sale in place, with the unit una\-ailable. 

The results from simulation are shown in Figures 6.13 and 6.14 respectively. 

The price of the sale from these simulations is calculated in a manner similar to 

Section 6.6.2.3 as c = 10.11 $/MWH. Thus, the loss of the unit results in an increase 

in the costs from c = 6.67 $/MWH. Now, given that the probability of forced outage, 

and the bid distributions are independent, the following objectives can be derived for 

the bidding problem. The objective for the expected vjilue maximizing participant is as 

follows: 

(1 - Pf .o.r.) {(1 - F{x,  a ,  b)){mx - c) + F{x,  a ,  b){-p)}  + 

P/.o.r. {(1 - F{x,a,b))(mx -  c) + F{x,  a ,  b){-p)}  (6.21) 

The objective for the expected utihty maximizing participant is as follows: 

(1 - Pf.o.r.) {(1 - F{x, a, b)) {e - e-^(W^+120(mx-c)r j ^ 

F(x,a,6)(0-e-^(^-i2Oprj| + 

Pf .o.r. {(1 - F{x,  a, b))  (0  -  j ^ 

F(x, a, b)  (e  - J (g 22) 

Results of optimization are given in Table 6.11. Upon comparison with Table 6.6 

shows that all the suboptimal bid prices are higher for the case where system outage risk 

is included. In the expected value maximization case, the possibility of outage has made 
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the participant effectively revise the generating cost as a probabilitj* weighted average 

of healthy and outaged costs. In the expected utilit>- maximization case, a similar effect 

has occurred, with the added consideration of price risk aversion. Admittedly, such 

an inclusion on system health risk is only as good as the forced outage probability is. 

However, if the participant wishes to include a more detailed model for incorporating 

outage risk, the bidding model can certainly be modified to include it. 

Table 6.11 Variation of suboptimal values of 16-unit system with strat­
egy (sale case considering unit outage possibility). 

Strategy x* Ps' SiPsY EibiPs') EUibiPs') 
EV-Max. 1st hour 0.7100 10.6504 0.7607 2.9208 0.1325 
EU-Max, 1st hour 0.7043 10.5648 0.7773 2.9178 0.1326 

EV-Max. other hours 0.5868 8.8018 0.9659 1.2404 0.0323 
EU-Max, other hours 0.5551 8.3261 0.9821 1.1291 0.0403 
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7 SUGGESTIONS FOR FUTURE WORK AND 

CONCLUSIONS 

7.1 Suggestions for Future Work 

The research presented m this dissertation was a first-attempt at developing a bidding 

strategy framework for the energy brokerage market. While progress was made towards 

this goal, it is recognized that many issues remain unresolved, and many problems 

unsolved in this area. Of these, the following areas are suggested as areas for further 

research. 

7.1.1 Market-Based Strategies 

• The market rules used in this research were very simple, in order not to distract 

from the stated goal of strategy development. However, given the fact that several 

complex markets are evolving currently, such as the California ISO-PX market, it 

would be of value to extend the strategies developed here to fit a single clearing-

price model, in addition to the bilateral market structure assiuned here. 

• The lower bounding result derived and used in this research lead to the subopti-

mality of the bidding solution. This lower boimding was needed primarily because 

of the extremely limited form of information that was assumed as being public. 

Exploring the effects of assuming that more data is publicly available could provide 

a basis for further research. This would involve the determination of how each new 
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data item would impact the strategies and their outcomes. 

• Transmission is modeled at a rudimentary level in this research. An enhanced 

transmission model, with the inclusion of transmission loss-allocation, and ancil­

lary service considerations would provide a more realistic representation of the 

energy markets. This could involve using estimates of anticipated line loadings, 

transmission usage costs, and ancillary service costs. The mechanisms for obtain­

ing and modeling these estimates, and the impacts of such detailed models on the 

effectiveness of bidding strategies is a good candidate for further research. 

From a modeling perspective, a detailed survey of different probability distribu­

tions in addition to the ones modeled in this research, would be of value. Enhanc­

ing the simulator to add an automatic regression feature would greatly reduce the 

time spent in evaluating such distributions. Currently, regression is performed by 

manually interfacing the data with a statistical package such as SPSS. 

Analytical sensitivities of the results from suboptimal bidding to the estimated 

parameters of competitors' bid distributions may not be possible for the models 

proposed here. However, a detailed study of numerical sensitivities would be a 

useful area to research further. Such a sensitivity study would also provide better 

ways to design and implement heuristics for tuning of the suboptimal bids. 

The initial testing of the strategies presented in Chapter 5 involved the assumption 

that only one participant uses the strategy at a time. This procedure was used 

to test the effect of a strategy when it is assumed that market conditions do not 

change substantiedly from the time the market data was obtained to the time 

actual bidding for the subsequent periods is performed. Variations on this format 

of testing would help identify the true value of these strategies imder different 

market conditions. For this, several rounds of simulation, with each participant 
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using various strategies based upon the results of the previous round, would provide 

more insights. Again, for this kind of testing to be implemented on a large scale, 

inclusion of an automatic regression feature in the simulator would be of value. 

7.1.2 Scheduling-Based Strategies 

• The illustrative scenarios described in this research axe somewhat limited by the 

capabilities of the simple unit commitment program used. It would be of value to 

interface the simulator to a more versatile unit commitment or scheduling package 

in order to further explore the effects of changes in commitment schedules. 

• In some of the scenarios presented in Chapter 6, the penalties for defaulting on 

a transaction were assumed to be simple numbers. Further research in this area 

could include the explicit modeling of stand-by imits, piimped-storage hydro units, 

emergency dispatchable generation contracts, or insurance and financial contracts, 

to determine a realistic value for this penalty. 

• The use of utility functions to model risk assumed that the participants already 

knew what parameters to select. However, the selection of the appropriate util­

ity function parameters is in itself an interesting and challenging area for future 

research. 

• The availability of financial tools for risk management currently is somewhat lim­

ited. But in future, if such tools evolve into more widely used and effective means 

for hedging risk, then the objective functions in the bidding process could change. 

Exploration of possible objective functions is another possible area for future re­

search. 

• In Table 1.1, several factors were listed, that could affect the bidding strategies of 

the participant. Of these, only a limited number have been discussed within the 



www.manaraa.com

149 

scope of this research. Inclusion of some of these factors into bidding strategies 

would be a natural extension of this work. Examples include the inclusion of unit 

maintenance requirements, load-related factors, fuel-related factors and emission-

related factors, into the bidding strategies. 

7.2 Conclusions 

In this dissertation, a framework has been presented for the development of bid­

ding strategies for the individual participants in an energy brokerage. The framework 

included the definition of different types of participants, the factors that affected the 

bidding behavior of the participants, and a probabilistic model to incorporate available 

market information in the determination of bid prices for the participants. Based on this 

probabilistic approach, various distributions were selected for modeling competitor bids, 

and expressions were derived for the determination of optimal bid prices. A simulator 

was developed to implement and test these strategies. The following section presents 

the conclusions reached from this activity. 

7.2.1 Market-Based Strategies 

The probabilistic modeling of competing bids has been shown to hold promise, al­

though future research is expected to enhance and improve the effectiveness of this 

approach. The three functions selected for modeling the competitors' bidding behavior 

in this research were the polynomial, incomplete-beta and incomplete-gamma functions. 

The relative advantages and disadvantages of these distributions were discussed in Chap­

ter 3. Overall, the incomplete-beta function approach seems to be the most flexible of 

the three distributions. The polynomial distribution has the advantage of being simple 

to obtain a fit for, as well as to implement. But it suffers from the accuracy point of 

view in satisfying the CDF property of being bounded by 1. Also, the multiple solutions 
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given by this model are not guaranteed to be real numbers. Furthermore, heuristics 

are difficult to implement for this distribution. The incomplete-gamma function is very 

similar to the incomplete-beta function in its properties. However, because of the fact 

that its domain is not finite (normalized), it is difficult, using this distribution, to obtain 

a proper fit to market data. Thus, the incomplete-beta function approach was found to 

be the best of the three because it is flexible, and relatively easy to implement model. 

Based on the simulations performed on the test system, shown in Chapter 5, the 

following conclusions are drawn. 

• The availability of market information, such as transaction prices, can be used to 

model competitors' bidding behavior. The simulations showed that, while there is 

promise in using the limited information to improve bidding performance, trans­

action prices are not always an effective proxy for actual bid information. 

• An attempt was made in this research, to introduce heuristic tuning of the bids 

by the participants, after the probabilistic method was completed. The results 

clearly do not indicate which of the heuristics is superior. However, the results do 

indicate that, in the case of the incomplete-beta function, it is possible to improve 

the performance by more detailed modeling of the competitors. 

• Also, because of the presence of the normalizing bid-price factor m, it is possible 

to add a certain amount of "intelligence" to the bidding strategy, by incorporating 

a market spread in the parameters of the distribution. Exactly how participants 

might arrive at this spread was not explored in this research: only how to incor­

porate such information was discussed. However, the results indicate how partici­

pants would be able to improve their performances, if such, conjectures about the 

spread in the market were to become available to them. 

• The extent to which peirticipants would be willing to model their competitors could 
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depend on their own costs, objectives, as well as on their key competitors. For 

example, Company 1 and Company 5 in the test system were the predominant 

sellers in the simulations presented in Chapter 5. Also, when one of these com­

panies attempted to increase their sell bid prices beyond a certain point, it was 

observed that the other company "cornered" the market. This suggests that the 

two companies have similar cost and capacity structures. (Examination of the pro­

duction cost databases of the two companies shows that indeed, this is the case. 

But access to each other's production cost databases is not necessary for the com­

panies to conjecture that this is the case.) This could be sufficient motivation for 

the companies to model each other's bidding behavior in more detail, or, if this is 

not possible, to force their bidding strategy- to be more conservative. In addition, 

such advantages could motivate some new companies to be created, that provide 

market intelligence services to the participants. 

• Transmission impacts the effectiveness of the strategies in a complex memner. Two 

types of effects were observed from the simulations. One was the rejection of 

trajisactions because of violations in transmission line limits. The second was the 

rejection of transactions because the energy cost savings was insufficient to justify 

the incurred transmission costs. Of these, the former is a factor that will have to 

be considered regardless of the rules of the market. In other words, system security 

constraints will always directly affect the effectiveness of a strategy, if the proposed 

transactions violate them. The latter constraint is a result of our assumption 

that the broker takes transmission usage costs into account during the matching 

process. In some of the evolving markets, it is left to the participants to reserve 

transmission usage independently of the energy market. In this case, transmission 

usage costs will have to be incorporated into the cost components of the bidding 

strategies. In all likelihood, this will make some transactions non-cost-effective. 
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only indicate the extent to which such considerations affect the performance of 

the participants, and the simulations indicate that the effects could be significant. 

However, it is reasonable to expect that participants shotdd develop methods that 

will incorporate transmission usage costs into the bidding process. 

7.2.2 Scheduling-Based Strategies 

In Chapter 6, an attempt was made to illustrate how the strategies of a company 

that owns and operates generating facilities would be affected by scheduling considera­

tions. Some operating scenarios were described, which illustrated the complexities that 

are added to the strategic bidding problem when various unit commitment factors are 

included. It was also recognized that uncertainties in scheduling introduces risk. The use 

of utility functions was suggested as a means to model the attitudes of the participants 

towards this risk. Results were presented that contrast the expected utility maximization 

approach with the expected profit maximization approach followed in Chapter 3. 

The Expo-power utility function developed by Saha [4] was selected for this model­

ing because of its flexibility in modeling various types of risk aversion. An additional 

parameter W was introduced to take into account the initial wealth of the participant. 

The comparisons, between the expected utility and expected profit maximization ap­

proaches, indicate that the utility function approach provides a mechanism to include 

risk considerations in strategic bidding in a consistent manner. However, it must be 

emphasized that the accuracy of this model in representing a participant's risk attitudes 

depends on how well the participants select the parameters of the utility function. 

Generating system health considerations are very complex, and to include these in 

a detailed manner in bidding strategies is beyond the scope of this research. But an 

attempt was made to illustrate the complexities involved by considering the simple case 

of a unit outage, modeled through a unit forced outage rate. The example shows the 
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effect of such an outage on the suboptimal bid prices. However, the extent to which 

participants wish to model generating system health risks in their bidding strategies de­

pends on a number of factors, including the health of the system, the resources available 

to the participant, and alternate mechanisms that the participant may choose to spread 

the risk, such as insurance, or financial hedging tools. 

In conclusion, this research has provided a framework for strategv* development for 

bidding in an energy brokerage. A clear definition of the problems associated with 

strategic bidding has been presented. Initial attempts at providing solutions to the 

problems, while not being conclusively successful, have opened up several promising av­

enues for further research. These avenues include, but are not limited to, the apphcation 

of probabilistic modeling of competitor bids, the application of heuristic tuning, and the 

development and testing of such heuristics with the aid of a simulator. An attempt 

has also been made to incorporate the risk preference attitudes of participants, into the 

strategic bidding process. The use of utility functions to achieve this purpose has been 

successfully demonstrated. It is expected that the results of this research will not only be 

directly applicable to the electric energy market industry, but also to future researchers 

in this area. 
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APPENDIX 

In this chapter, the derivation of first order and concavity conditions for optimality 

are presented for the various distributions modeled in Chapter 3. 

A.l Derivation of First Order Conditions for Optimality 

A.1.1 Polynomial Modeling 

Consider the objective function for a buyer given in Equation 3.16, reproduced below: 

EibiPb) = (c - P6)(ao + oipft + a2Ph^ + ... + a„_ip5"~^ + OnPb') (A.l) 

For first order conditions to be satisfied, the first derivative of Eibipb) should be equal 

to zero. In other words 

E'M = 0 

-{ao + aiPb + a-iPb^+ OnPt") 

+(c-P6)(ai+2a2P6 + ---+ (n - l)an-iP6"~^ + = 0 (A.2) 

Simplifying the above equation, we get: 

0 = -oo - aipb - ... - On-iPb""^ - a„Pb" 

+cai + (2ca2 - ai)pb + ... + {ncOn - (n - l)an-i)p6"~^ - (A.3) 

Grouping similar terms, and introducing a new coefficient a„+i = 0, we get the 

following expression for first order condition, that is identical to Equation 3.17: 

(n + l)(ca„+i - a„)p6" + n(ca„ - a„_i)p6"~^+ 
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... +2(ca2 - ai)p6 4-(cci — Co) = 0 (A.4) 

Similarly, for a seller, the objective function is given by Equation 3.19 and is as 

follows: 

ElbiPs) = (Ps - c)(l - Go - aiPs - 0.2Ps^ " . . .  -  -  O n P s " )  ( A . 5 )  

Applying first order conditions to the above equation and by introducing the coeffi­

cient On-i-i = 0 in a manner similar to the approach for the buyer, we get the following 

result: 

E'lbiPs) — 0 

(1 - flo - aiPs - a2Ps^ - ... - - anP5") 

+(P5 - c)(-ai - 2a2Ps - ... - (n - l)a„_iP5"~^ - nanp/"^) = 0 

1 - ao - aiPs - ... - On-iPs" ^ - OnPi" 

+cai + (2ca2 - ai)ps + ...+ (nca„ - (n — l)a„_i)p5"~^ - nanPs^ (A.6) 

This leads to a similar condition for optimality as for the buyer, given by Equa­

tion 3.20, reproduced here: 

(n + l)(ca„+i - an)Ps" + n(can - an-i)i?s""^+ 

. . .  + 2 { c a 2  -  a i ) p 5  +  ( c f l i  -  Q Q  +  1 )  =  0  ( A . 7 )  

A.1.2 Incomplete-Beta Modeliiig 

First order conditions for incomplete-beta modeling can be obtained by differentiat­

ing the objective functions for a buyer and a seller given by Equations 3.27, and 3.28 

respectively, reproduced below: 

Eib{x) = (c - ^ (A.8) 
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For a seller, a very similar procedure would result in the following Eii,{x): 

Eu.(x) = (mi - c) (l - I' t-'(l - (A.9) 

First order conditions can be obtained by differentiating the above equations once 

w.r.t. X. The condition is as follows for a buyer: 

B(a,  b)  

Similarly for a seller: 

— 0 

(c — — m [ t"~^(l — 
Jo 

dt = 0 (A.10) 

1 
B(a,6) 

— 0 

(c — mx)x®~^(l — x) ' '~^  +m ̂ 1 — J  f''~^(l — j = 0 (A.11) 

A. 1.3 Incomplete-Gamma Modeling 

First order conditions for incomplete-gamma modeling can be obtained by differenti­

ating the objective functions for a buyer and a seller given by Equations 3.32, and 3.33 

respectively, reproduced below: 

Eibipb)  = {c-pb)^^  e (A.12) 

EibiPs) = {Ps- c ) ( l -  £  e H" (A. 13) 

First order conditions can be obtained by differentiating the above equations once 

w.r.t. pft and Ps respectively. The condition is as follows for a buyer; 

r(a) 

Sinailarly for a seller; 

Elb(P(>) — 0 =T» 

(c - Pb)e~^''Pb'^~^ — f 
Jo 

= 0 (A.14) 

r(a) 

ElbiPs) = 0 

(c - P5)e~^'Ps''~^ ^ i}~ L = 0 (A.15) 
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A.2 Concavity Conditions for the Objective Function 

A.2.1 Polynomial Modeling 

Concavity conditions for a majdmum require that the second derivative of the ob­

jective function be negative. For polynomial modeling, this condition can be derived by 

differentiating Equations A.4 and A.7 w.r.t. and Ps respectively, and the following 

results are obtained: 

E'l'biPh) <0 (n + l)n(ca„+i - ( in)Pb^~^ + n{n -  l)(can -  an-i)pb^~'  + 

. . ,  +  2 ( c a 2  —  c i )  <  0  ( A . 1 6 )  

EibiPs) <0 =?> (n + l)n(can+i - a„)p5"~^ + ri{n - l)(can - On-Op/"' + 

. . .  +  2 { c o . 2  —  O i )  < 0  ( A . l  ( )  

A.2.2 Incomplete-Beta Modeling 

Concavity conditions for incomplete-Beta Modeling are obtained for a buyer and a 

seller by differentiating Equations A.10 and A.ll w.r.t. x respectively. The result is the 

same for both cases, and is obtained as follows: 

E'lbiPb) < 0 

[—2ma:®~^(l - 4- (c - mx) |(a -  — x)^~^ 

-(6 - l)x®-Hl - ̂)^"^}] < 0 (A.18) 

=>• —jr j(a-t lf)mx̂  — {(a + l)m + c(a + b — 2)}x 
B{a,o)  

+c(a - 1)] < 0 (A.19) 

x''~^(l — x)^~^ 
In the above inequation, the first term on the left hand side, ——rr , is 

always greater than zero for positive values of x, a,  b.  This condition is always satisfied 
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because a: is a positive fraction of the maximum bid price m. and a and b are positive 

by definition for the beta distribution. Thus, the above condition can be simplified to 

yield the following quadratic inequation; 

(a + b)mx'^ - {(a + l )m + c(a-h b — 2)}  x  + c(a - 1) < 0 (A.20) 

This is identical to the concavity condition given by Equation 3.29. 

A.2.3 Incomplete-Gamma Modeling 

Concavity conditions for incomplete-gamma modeling are obtained for a buyer and 

a seller by differentiating Equations A.14 eind A.15 w.r.t. and Ps respectively. The 

result is the same for both cases, and is obtained as follows, with p representing p^ for 

a buyer and Ps for a seller: 

E'M < 0 

[-(c - p)e~^p''-^ + e~P {(a - < 0 

[ p ^  -  { a +  C +  l ) p  -f (a - l)c] < 0 (A.21) 

In the above condition, the first term on the left hand side, ,—, is alwavs greater r(a) 
than zero for positive values of p and a.  This condition is always satisfied because p is a 

positive bid price, and a is positive by definition for the gamma distribution. Thus, the 

above inequation can be simplified to jdeld the following quadratic inequation: 

p^ -  {a+ c + l)p + c(a — 1) < 0 (A.22) 

This is identical to the concavity condition given by Equation 3.34. 
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